T=c
B
@
' el
<4

How to:
Code Tetris!

A handy guide that shows you how to code Tetris by
firstly creating the Game Engine in Serial Monitor and
then the Graphics Engine to render the game on your
console! Lets jump right in!

Contents

(07 ¢=To L] aTe I =Y o =PSRRI 4
GIOME ASSETS ...ttt ettt et e sttt 4
Using 1 Dimensional Arrays VA 2 DIMeNSIONOL AITOYS ..coueiiiiieiiiieiiieeiie ettt siee e 5
IMPLEMENTING ROTATION ..ot e e e e tb e e snbaeessbeesnbaeenes 7
07 Yo | 4o Te T { aT=N o oo T o I USSP 9
Lets start outputting SOME thiNgSoooiiiii e 12
(€ To] a a =3 Mo ToT o X< TR PPPPPPPRN 13
DIOWING T8 FIOMIE ...ooiiiieiiiiee ettt et e e e et e e e et eeeeentbeeaeensbaeeeensaeaeenseeas 13
4 SEAQGES OF GUMIE DBV ..ottt ettt e e ettt e e et e e s e bt e e e enbteeeesbaeesenntaeeeennsaeas 16
(070 LT3 o] RO U TS PORPRRRPRRROPN 16
TESTING COLLISION ..ttt e sttt e e ettt e e e tb e e e e satb e e e e s stbaeessnsseeeeenssaeeeannses 20
(€ To [0 o= NT0 o1 o Ve SO PP 24
(7= [o] o T 1 (TSP PPPRRRURNE 25
USING AFAUDOY ...ttt ettt ettt e et e et e e esba e e tbeessbeeasbeessbeeessbeesssaeansseesseessseeenssaens 26
DEDOUNCE: WO IS T ...ttt et et ettt et eb e 28
Adding the force doWN fEATUMEoiiiiiiccc e e 32
(0] oT=Tol qTaTe I Lol ol LT a1 S U USSP PP 39
REMIOVING LINES..ciiiiiiiiie ettt ettt e e et e e ettt e e et eeeeansbeeeeansbaeeeansbaeeeensseeeeannseeas 41
Adding INCreasing DIffiCULLYooiiiiiii e s e 46
Fie [0 [T aTe s ToTo T RO SR PR 48
(€ ge o] alTers] = o Yo 1o [NN USRS PP 49
L g Yo L= o () TR 49
SNOWING TE SCOTE.....eiiiiiee ettt e e et e e e bee e e esbaee s enbaeeeenseeas 58
GOMIE OVEI SCIEEN ...ttt ettt ettt ettt e ettt e e sttt e e sttt e e st e e et et e e sabbeeeesabbeeessmreeesennneees 60
(0] ¢=To L] aTe ol 2 ¢ = To] =TT o B P R PPR 62
LAST TOUCK = SOUND....c.iiiiiiiii ettt ettt st 62

FINOL COT@ ..ttt b e bt sttt b e s bt e s bt sat e st e bt e beesbeesaeeenteen 65
TetriS —TUTOIIOLINO .ottt ettt et e b e sbee e 65

Written by Jack Daly

Version 1.1

microcade

Special thanks to @javidx9 (One Lone Coder) for giving me permission to reference his video. It does an amazing job
at explaining the theory of how we are going to code Tetris!

https://youtu.be/80K8_tHeCIA

CC BY-NC-SA
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/

microcade

https://creativecommons.org/licenses/by-nc-sa/4.0/

Creating Tetris

In this tutorial, we will learn how to code Tetris for the microcade console!

Your first task is to create a new file called “Tetris_Tutorial”

Game Assets

The first thing we are going to need when creating any game Is some game assets. In

Tetris, this means we need the various shapes - known as tetrominos.

To create these, we will first start by creating an array of 7 strings - one element for each
piece. To create the pieces, we will use dots (.) to represent empty space and X’s (X) to
represent a part of the shape.

1 String tetromine[7]; Now this might seem

= vold setup() { quite confusing,

2
4 JiCreating the pieces however, if | was to
5 tetromino[0] = ".. .. Mo, XK. W XG0T/ Tetronimos 4x4d break out each string
£ tetromino[l] = . ¥, XL ¥ .o .. " into a 4x4 grid, you will
7 tetromino[Z2] = "..... WL XKLL,
8 tetromino[3] = ".X.. .00 .. K. see how the X’s and
9 tetromine[4] = "X, 300K " dots come together to
10 tetromino[5] = .M. ML DL L. " create the tetrominos:
11 tetromino[6] = .. XK. LKL KL L L. "
17}
tetromina[0] = tetrominoll] = tetromino[2] = tetromino[3] = "
o XL K.
X K. LML |1 X
X, R
tetromino[4] = tetromino[5] = tetromino[E] =
LKL i LK.
i LKL . K

However, we write them inline as its easier and looks nicer! Be sure to copy this bit of code
in the void setup on lines 1 to 12.

microcade

Using 1 Dimensional Arrays VA 2 Dimensional Arrays

When creating the assets, we have an option of creating them with a 2-dimensional
array, or with a single dimensional array. In this section, we will go over why we will be

using a single dimensional array.

If you want to check out the below explanation in video format, you can check out
@javidx9 brilliant explanation from 3:13 to 7:23.

https://youtu.be/80K8_tHeCIA?t=193

We can create a grid using a 2-dimensional array that will look something like this:

o'
o |\ 3

2

o P a(=dcyJ
X A

J 2l %

3

However, using this, we would have to create an asset for every
single shape - and every single shape variation.

—

. . O 2 .S
When we create this array in memory, what’s actually
happening is we get a contiguous block of memory. This means o 0 | 2 3
the memory blocks (e.g. memory block a[0][0], the first block, is \ 4 5 6 7
next to the next block, a[1][0] and so forth) are assigned one 3 % 2 q lO | ,
after another.
If you look at the diagram on the left, you can see how we can . ‘2' ‘3 “" 'g

now fill in the blank grid with numbers. This shows how each
block is assigned one after another.

If we want to access memory block 10, in a two-dimensional array we would use a[2][2]
as it is 2 columns across and 2 rows down.

Whereas in a one-dimensional array, we can use a formula to get the position using X and
Y coordinates, as if the one-dimensional array was in a grid-like fashion.

microcade

https://twitter.com/javidx9
https://youtu.be/8OK8_tHeCIA?t=193

QCXDC.UJ

I 2

1 | = Yxw+x
31212 1¢

D= 2x4+ 2

The formula is:

Index = (number of rows down) * (width of the array) + (number of columns across)
I=Y*w+Xx

| = gxw+x

Meaning we can take our x and y coordinates and calculate
where it exists in our one-dimensional array.

Similar to what we would do if we had a two-dimensional I O oy Z X q’ + Z

array (using each dimension as an axis - x and y)

So why do we use this? Why don’t we just use a two-dimensional array?

Consider when we need to rotate a Tetris piece:

o v

Oli1l12l|3
128 4 O
39S
4 ID6 2
K nz3

Cc
wnNnN -9

O

\
I
3

OO) '\zgx W+t X q0°) - '2-*3‘(1;,@@

microcade

Here we can see what happens when we rotate a Tetris Piece. All the memory block
values shift. We can also see, by comparing both grids, that we can find patterns and
create an equation from it.

Compare both grids, notice that when x and y are both 0, the first index value is 12 in grid
2. Another pattern is when y increases, so do the index values by 1. Therefore we just add y
to the 12 value. E.g. when the y coordinate is 1in grid 2, the index position becomes 13,y =
2 then the index value is 14 etc.

Now we need to focus on the change in x in grid 2. We can see that it decreases in
multiples of 4. When x = 1 the index value is reduced by 4 (12 - 8), when x = 2 the index
value is reduced by 4 again (8 - 4) etc.

With these two rules we can create a formula:
I=12+y-(x*4)

This formula rotates our one-dimensional array by 90 degrees and gives us the
appropriate indexes for this rotation.

For a 180 degree rotation the formulaisasso:i=15- (y *4) - x
And for a 270 degree rotation, the formulais: i = 3 + y(x*4)

Using these formulas allows us to only use one asset for each piece, using the index value
to emulate a rotation for each piece.

Implementing Rotation

Now that we have the formulas, we need to implement this in code.

=0 int Rotate(int px, int py, Int) Here we can see we have created a function
21 . .
- D int pi = 0 that returns an integer (hence specifying the
23 switch (r % 4) function as int) that takes in 3 parameters:
24 . .
-c case D: #/ O degrees Piece X coordinate = px
2B pi=py * 4 + px: . .

Piece Y coordinate =
27 break: Py
=8 case l: // 30 degrees And a value that represents how much we

a
[ia]

pi =12 + py - ipx * 4);

L

want to rotate the piece by =r. This is a value

30 break:

31 case 2: // 180 degrees fromOto3

3z pi =15 - (py * 4) - px; . .

33 break: Using a switch command we can rotate the
34 case 3: // 270 degrees piece depending on the r value.

33 Pi =3 - py + (px * 4);

36 break; - 0 represents no change/0 degrees
LR - 1represents a 90-degree turn

3B return pi:

e . - 2 represents a 180-degree turn

SR |

- 3represents a 270-degree turn

microcade

In the switch case condition, we use the modulo or MOD arithmetic operator to divide the r
value by 4 and get the reminder.

If you are unfamiliar with modular (%), this operator returns the remainder of the division.
E.g. 9 % 4 would be 1 as 4 fits into 8 2 times reminder 1. The modular operator disregards

the 2 and simply takes the remainder. E.g. 19 % 8 = 16 r 3 therefore would return 3.

Using modular means the r value could be 23 (meaning we have clicked the rotation
button 23 times) but as we are using modular, the r value would be remainder 3 (23 % 4 =
5r 3) meaning a 270-degree turn. This allows us to add 1 to the r-value each time we
want to rotate the Tetris piece - and not worry about resetting it to 0/having to deal with
boundary checks when it reaches 3 etc.

Go ahead and copy this function below the void loop

microcade

Creating the board

One last asset we need to create is the board. To create the board we are going to need to

declare some variables first.

SiPlaying Field

4 int nFieldWidth = 12;
5 int nFieldHeight =
B

la;

unsimed char pField[Z1&8]:»

nFieldWidth declared the width of the playing field

nFieldHeight declares the height of the playing field

pField is an empty array of unsigned chars that will be used to store the fields data.

Below is a preview of what the pField will store:

Sgooooooooos
Sgooooooooos
Sgooooooooos
Sgo0oonoooos
Sgo0oonoooos
Soo00oonoooos
Sgo0oonoooos
Sgo0oonoooos
Sgo0oonoooos
Sgooooooooos
Sgooooooooos
Sgooooooooos
Spo0ooooooos
Soo00oo0ooloos
Sgooooooloos
Sgooooooloos
Sgooooooloos
9599959559859

& unsigned char

The reason we are using unsigned chars for this array is to save memory
space. A char, stores values from -128 to 127 using 1 byte of data. Signed
chars store values from 0 to 255 in 1 byte of data.

When you think of chars you usually think of characters such as ‘A’ or ‘a’
but keep in mind that every character is represented as a denary value in
either ASCII, extended ASCII or Unicode etc.

The reason we do not use integers, in this case, is because integers use 2
to 4 bytes of data to store a much larger range of values. As we will only
be using values from 0 to 9, we are saving memory space by using chars.

This is common in 8bit programming to save memory and make the
program more efficient.

The array will have 1 element for 1 pixel/brick for our game. The width *

height of the field brings us to (12*18=) 216 elements/bricks.

Now that we have our variables and pField array declared. We want to fill the empty array
however we want to fill It in a particular way to create a board. If the element is on the

bottom, left or right edge, then we want to set itto a 9 as it is a boundary if it isn’t then we

want to set the element to 0 as it is empty space. The array will Look like the previous

picture

To do this we will use nested for loops to loop through the x and y values to set each

element in the array to either 0 or 9:
19 for (int x = 0; % < nFieldWidth:; =+ // Board Boundary
20 for (int ¥ = 0; ¥ < nFieldHeight: w++)

21 pField[y * nFieldWidth + =] =

(X == 0 || ® == nFieldWidth - 1 || ¥ == nFieldHeight - 1) » 8 : 0:

microcade

The first for statement loops through the width and will run the next for statement 12
times. This next for statement iterates through the height, running line 21 18 times,
however as these are nested for loops, line 21 will run (12*18=) 216 times meaning each
element in the array will be assigned a value.

Let’s take a look at line 21:

10

microcade

pField[y * nFieldWidth + x] = (X == 0 || ® == nFieldWidth - 1 || ¥ == nFieldHeight - 1) » 9 : 0O:

This line can actually be expanded into the below code:

if (x == [| = == nFieldWidth - 1 || ¥ == nFieldHeight - 1){
pField[vy * nFieldWidth + =] = &
}
else|
pField[vy * nFieldWidth + =] = 0
}
500000000005 The above code reads as:
500000000009
soooooooooog If the x value is equal to O = For the left side of border of the field
500000000008

gpooooonoops OR the x value is equal to 11 (nFieldWidth - 1) = For the right side of the

soooooooooos border of the field

500000000009

aponooooooos OR the y value is equal to 17 (nFieldHeight - 1) = For the bottom border of
500000000009 the field

500000000009

sopoooooooos Then set the value to 9. If none of these is true then set the value to 0
500000000009

soonooooonns T his will create something that looks like the image to the left. Where 9
goooooooooos represents the game border.

500000000009 ‘ ' _
snonoooooons Above is an example of a ternary operator. It is used to replace if/else

soooooooooos - statements that take the below form:

8999895995995 o
if{condition) { \Where the condition decides if the variable will be one
= X: s . el ep s
value or } p:: (another. In our case, it’s either 0 or 9. We can write it in
one line by var = ¥: using the below format:

}

Variable = (Condition) ? Option1 : Option 2;

If the condition is true, Optionlis assigned to the Variable. If the condition is false, then
Option2 is assigned to the Variable.

Let’s take another look at line 21 and identify what our variable is:
pField[y * nFieldWidth + x] = (x == 0 || % == nFieldWidth - 1 || v == nFieldHeight - 1) ? 9 : 0;
The variable part of the code is:

pField[y * nFieldWidth + x] Here we are using the formula we discussed earlier to get the
index position in the one-dimensional array from two coordinates.

Go ahead and copy this into your void setup()

11

microcade

Lets start outputting some things

Now that we have a board, its worth outputting it to make sure everything is how it should

be. We can use the Arduino Serial Monitor to do this however we are going to need to add
some extra code.

To setup the serial monitor we need to add:

B woid setupi) | This will allow us to open up Serial monitor and
E.

serial.begin(3600) ; view the data being sent from the Arduino to

10

11 I,-",-"Creatinu:_r the pieces your computer. And prepares both your Arduino

12 tetromine[O0] = "..¥...¥X...¥...xX.' andcomputer to exchange data at a rate of
9600 bits per second.

Place this at the start of void setup()

And we need to create a function that can interrupt and output the field:

58 woid OutputFieldi) {
25 for (int 1 = 0; 1 < nFieldWidth * nFieldHeight: i++) {

g0 if (1 % nFieldWidth == nFieldWidth - 1) {
ol Serial.println(pField[i]):

62 }

B3 elae |

o4 Serial .printipField[i])

E5 }

66 }

&7 Serial.println("----"1;

g8 '}

Add this underneath the void loop()

Here we loop through the entire pField array (nFieldWidth * nFieldHeight) and output the
data. However, if we were to just output the data using Serial.print(), it would be on the
same line, so we need to use the Serial.println() to print the next data on a new line every
time we reach the end of a row.

To do this we use an if statement to see if the current index (i) has reached the end of the
row (nFieldWidth).

Here we use i modular nFieldWidth to see if the remainder is 11 (nFieldWidth - 1). If the
remainder is 11 then the next print needs to be on a new line as all 12 elements have been
printed (as arrays are indexed from 0) and therefore the next set of elements are in the
next row.

To output the data on the next row we use Serial.println(). This moves the cursor to the
next line and then outputs the data. Whereas Serial.print() just outputs the data wherever
the cursor is (inline).

[Line 67] Serial.println(“----%); is used to help us differentiate between each Field

12

microcade

Game Loops

These are the most important aspect of a game engine. This sequences everything that is
going on in your game. Tetris will not have an overly complex game loop. It will have
aspects such as updating the game logic, handling time, getting the user input and

displaying it to the screen.
Let’s create our game loop:

Firstly, we need to add a simple bool variable to store if the game is over or not:

£ unziimed char pField[Zle]:

g bool bGameOwver = false:l
=]

10 woid setup() {
11 Caowd a1l Tarmin {QEAMNY =

And then we need to add a simple while loop that will only run if bGameOver is false:

4 woid loopl) {
while (!bGameCwer) // Main Loop

{

LA |

]

}

L L L LD L L
W [a}]

s
[

}

This means, if bGameOver is True, then the game loop won’t run and the game will be
over as the variable is inverted meaning the condition will return false. However if the
variable is False (the game isn’t over), then the variable Is inverted and the condition

returns true meaning the while loop will iterate.

Be sure to add these blocks of code. Use the line numbers as a reference.

Drawing the Frame

Before we start implementing features, we want to see what we are working with. To do
this we will add some code that will print the game field to the serial monitor. For now, we
will be using this to watch our game evolve. Using Serial Monitor means we can focus on
the game engine and then the graphics engine afterwards.

Currently, we are outputting the field. The field is the numerical representation that will
be used to show the boundary and ‘locked-in’ pieces - e.qg. pieces that have been
previously placed. This won’t show actively moving pieces (aka the tetrominos that the
player is currently controlling).

Now we are going to output the Frame. This will look more like the final version of the
game and will be used in conjunction with the graphics engine.

13

microcade

The first thing we need to add is the translation of the pField to the output. This will
convert all values in the pField into the various characters:

Firstly we must define the output array with 216 elements
o unsEl(nedld Chnar prleld] <slbo |y
7 char Dutput[zlﬁ]d

Now we can jump into the game loop and start iterating through the pField to convert
each character:

Zhb while |!'blramelver) /7 Main Loop

27

Z8 J¢ Draw Field

28 for (int x = 0; ®x < nFieldWidth; =++)

30 {

3l for (int ¥ = 0; ¥ < nFieldHeight; v++)

3z {

33 ocutput[(v * nFieldWidth) + =] = " ABCDEFG=#"[pField[(v * nFieldWidth) + x]1]:
34 }

35 }

36

37 JutoutFieldi) :

The first two for statements should be familiar from when we create the pField array.
These simply loop through the x and y coordinates meaning line 33 will run 216 times.

output[(¥ * nFieldWidth) + x] = " ABCDEFG=#"[pField[(v * nFieldWidth) + x]1]:

Here we assign output[] with the index position, using the formula we are familiar with, to
either “ ABCDEFG=#" depending on the index position of the string.

For those that aren’t familiar with this, you can treat a string like an array of characters
and access them individually like an array. E.qg.

“Hello”[1] returns ‘e’ as the letter with index position 1 is the second character. In this
case,itisane.

Here we are converting the pField value into a character. pField[(y * nFieldWidth) + x]
also uses the formula we are familiar with and gets the index position of the array from
the two coordinates generated from the for statements. The value returned, will be used
as the index position for the string.

In this case, the 9’s that we defined as the boundary are being converted to a ‘#’ - fora
more defined outline. And the 0’s are being set as ‘ * empty space.

If we had tetromino pieces such as 1, 2,3 etc then they would be converted to A,B,C etc

Go ahead and add this code to the game loop.

The next thing we need to add is a very similar function to OutputField(). But this time we
want to output the ‘output’ function.

14

microcade

Lad

=

vold JutputFramei) |
for (int 1 = 0; i < nFieldWidth * nFieldHeight; i++) |
if (i % nFieldWidth == nFieldWidth - 1) {
Serial.printlnfoutput[i]);

}

=] (]

[T T Y O Y O
oo or

S elae |

S0 Serial.printioutput[i])

Sl ffGerial.print((uintd_t) output[i]):
gz }

93 }

94

g5 Serial.println("----"}:

S9E)

[Line 85] As explained before, the for statements loops 216 times, accessing all the
elements in the array.

[Line 86] The if statements checks if it is the end of the row - if it then it outputs the data
on a new line [Line 87]. If it isn’t then output the data in line [Line 90].

[Line 95] Then, once the whole frame has been outputted, print “----"to differentiate
between the next print.

Add this function after the function OutputField()

Now we need to call the function in the game loop.

38 TutputField() ;
38 JutputFrame() ;
40 }

41 '}

Let’s upload this and take a look at the serial monitor

15

microcade

& coms - o X
=4 || Now we can see both the field and
500000000008 ~ .
soo0on0o0cas frame being outputted.
S00000000009
S00000000009
s The difference between the two will
900000000009
soooonoooos be showcased more clearly when we
900000000009
#0000000000 start adding in the tetrominos!
900000000009
900000000009
900000000009
900000000009
900000000009
sonoonoocats 4 stages of Game Dev
999999999999
T, The 4 stages of most computer
: . games are as follow:
#
. .
¢ : 1. Game timing
#
: . 2. Input
.
), ! 3. Game Logic
#
! ' 4. Render Output
#
: . These loop to create the game.
FEEFEEEEAAEY
e T | Let’s go ahead and begin to tackle
some of these stages in the game
loop:
Collision

Tetris is quite simple when it comes to collision detection. This is because Tetris is made
up of blocks and the blocks move one whole block at a time. Meaning before we move the
piece, we want to check if the piece can be moved. If that current block is occupied - then
we cannot move there.

To do this, before we make the final move, we see if the move is possible by checking
ahead.

16

microcade

Here you can see how we would check this.

ol 0 0/0 |0 o Remember when we used dots and x’s to create the
0 ‘o b olo tetrominos? Well, as dots represent empty space, we
[ignore them, however, if an X is overlapping with a
ol O 4- | © valuethatis anything other then 0, then we return
that the movement is invalid as there is a collision.
ol © o4 ¢|o o
q_ We also need to check it isn’t going out of bounds.
oo O 2 O As we are going to be checking this a lot, we are going
O l 3 3 2) to make a function called “DoesPieceFit”

43 bool DoesPieceFitiint nTetromino, int nPeotation, int nPosk, int nPosY)
44 |

45 A4 All Field cells >0 are occupied

4 for (int px = 0; px < 4 pxt+)

47 for (int py = 0; py < 4; py++)

a8 {

49 S/ Get index into piece

50 int pi = Rotateipx, pv, nBEotation):

51

52 J4 Get index into field

3 int £i = (nPosY + py) * nFieldWidth + (nPos¥ + px);

54

55 f¢ Check that test is in bounds. INote out of hounds does
Se S/ not necessarily mean a fail, as the long vertical piece
7 S/ can have cells that lie outszide the boundary, o we'll
8 S/ Just ignore them

LS if (nPosX¥X + px »>= 0 s nPosX 4+ px < nFieldWidth)

E0 {

gl if (nPosY + py >= 0 s& nPosY + py < nFieldHeight)

B2 {

B3 J¢ In Bounds so do collision check

04 if (tetromino[nTetromino][pi] '=s '.' && pField[£i] '= 0}
B5 return false; // fail on first hit

BB }

67 }

B8 }

69

70 return true;

711

Add this block of code after the void loop()

The first thing to notice is the parameters. We are going to need to know the ID of the
Tetromino (0 to 6), what rotation it is in and where it is on the board (the x and y position).

Also note on line 246 that we, by default, will return true. Aka, we are only looking for
situations where the piece cannot fit due to collision.

17

microcade

[Lines 46 & 47] The first two for statements iterate the tetrominos. This means we are
checking every single block inside the tetrominos we created before (with the X’s and
dots).

[Line 50] Next we get the index position of the piece (called pi) from the rotate function
we created earlier. We do this to take into account any rotations that have occurred as
the rotate function will return the updated index position of the piece in its rotated form.

[Line 53] We get the index position of the field (stored in fi) - this will be the block that
the piece is ‘overlapping’ with. This follows the formula from beforehand: y * width + x

—

To get the y coordinate of the tetrominos
nPOSY r\Po";X piece in the field, we must add the nPosY,
4+~ which will give us the position of the top

o P left corner of the tetromino. We then add
K the py value to get the current position of
the block in question in the tetromino.

We then multiply this with the width to
follow the form of our formula.

And use a similar calculation to find the x
value. Add nPosX to get the top left
corner of the tetrominos, then add pX to

get the tetrominos coordinate.

This will return the index position of where the block in question would be on the field.
[Lines 59 to 61] Check to ensure that we do not go out of bounds with our checks.

If the total of nPosx + px is equal to or greater than 0, then we are in range. If it is also less
ten the nFieldWidth, then we are within range.

The next if statement does a similar check but with the y coordinates:

If the total of nPosY + py is equal to or greater than 0, then we are in range. If it is also less
than nFieldHeight, then we are in range.

[Line 64] This is the actual collision check. Here we take the tetromino and check the
value of its index position:

tetrominos[nTetromino][pi] will return the char at that index position, either ‘X’ or *.’

e.g. if nTetromino was 0, it would return ‘.. X....X....X....X.”[pi] In which we are the indexing
the string. It might look like a 2-dimensional array but the second index is for the string
position.

If itis == to ‘X’ and the pField value is not equal to O, if it is not empty space, then return
false as there is a collision.

18

microcade

And that’s it! Be sure to add this block of code after the void loop()

19

microcade

Testing Collision

Now that we have added collision, let’s test itl We need to create and render our first

tetromino piece.

Firstly, we have to add some variables for the tetrominos to be created:

J e e L T L

| nCurrentPiece = an integer value between 0 and

wm oomo-

int nCurrentPiece = 0; 6 that defines what tetromino piece is currently
10 int nfurrentRotation = 0;

11 int nCurrent¥ = nFieldWidth / Z;

12 int nCurrentY = 0; nCurrentRotation = an integer that stores the
13
14 lvoid setunl) |

active.

current rotation, this will be used with the rotate
function

nCurrentX = nFieldWidth/2 = forces the start piece to be in the center.
nCurrentY = 0 = Sets the current y value of the active tetromino to 0 (at the top).
Be sure to add this code before the void setup()

We need to draw the active tetromino separate to the field as it isn’t yet apart of the field.
Anything apart of the field is ‘locked in” and will be used to detect for a collision.

To do this, we use the output array (frame) that we created earlier. This is the key
difference between the ‘output’ and the ‘pField’ array as the output will have the active
and user-controlled tetromino piece.

44

45 /4 Draw Current Piece

48 for (int px = 0; px < 47 pE++) |

a7 for (int py = 0; py < 4; py+) |

48 if (tetromino[nCurrentPiece][Rotateipx, py, nfurrentPotation)] '= '.'})

49 {

50 output[inCurrenty + py) *nFieldWidth + (nCurrentX + px)] = nCurrentPiece + £5;

5l }

52 }

53 }

54

Lo Maitr e Fialdil -

Be sure to add this code in before the game loop, but after the ‘Draw Field’ loop. See line
numbers for reference.

[Lines 46 & 47] These two for statements loop through the tetromino array. Each for
statement loops through 4 times each as the tetromino pieces are 4 by 4.

[Lines 48] This if statement checks if the current tetromino piece is an X, if it Is, then it will
run lines 50. Let’s take a more detailed look at how we do this:

tetromino[nCurrentPiece][Rotate(px,py,nCurrentRotation] = Gets the current tetromino.
To get it we need two variables: The current piece (nCurrentPiece, a value between 0 and
6) and the rotation of this piece, using the Rotate function with the px and py variables

20

microcade

from the for loop and the current rotation variable. This Rotate function returns the index
value.

.. 1= 7 If this value is not equal to .’ (a dot) then run line 50,

[Lines 50] Sets the element with the same x and y position in the output array, to a
character. This depends on what piece is active, e.g. piece 0 which is the blue long
straight piece will set the block to ‘A’. Let’s take a look at how we do this.

i PosX output[(nCurrentY + py) * nFieldWidth + (nCurrentX + px)] =
bl L2 f’w° A + Returns the index position of the piece that needs to be
Posy Zp; v C? : Px returned. This is similar to how we got the index value in the
o o olo collision function:
olo o| 2/9 @
olalalal | Where nPosX/nPosY (in the diagram) are equal to
nhsy + Py nCurrentX/nCurrentY in our code

These are the coordinates of the top-left point of the tetromino.

The py and px are the coordinates of the block we are checking/displaying. By adding
these together we can get the overall coordinates of the active block

nCurrentPiece + 65 = nCurrentPiece will be an integer value from 0 to 6. For example, if
the nCurrentPiece is 0, 65 + 0 = 65. By adding 65 to it, we get the ASCIl value for A. If the
value is 1, then when we add 65 to the value and get 66, the ASCII value for B. This allows
us to differentiate between the pieces and later use this in our graphics engine to render
various colours for the various pieces.

As we used the two for loops, we are essentially going through every single block in the
tetromino and comparing it. If it is an X then we set the element/block in the output array
as a certain character.

Now lets go ahead and upload this to our Microcade Console and see what we get in Serial:

21

microcade

@ como - O x Here you can see the
|| =nd || cleardifference

. .

PN "l between the Field (first

500000000005 output [A]) and the

goo000000009

500000000008 Frame/output array

goo000000009

500000000009 (second output [B])

goo000000009

goo000000009

500000000009 The frame holds the

500000000009 . .

900000000009 active piece.

goo000000009

goo000000009 .

500000000009 The field holds

500000000009 . .

500000000008 everythlng that is

goo000000009 ¢ s /s .

900000000009 set / locked in’. The

§95999999999 .

frame is also a lot more
A #

A4 like the final game

A ¥

A4 version.

#

#

We could actually play

#

Tetris in the serial

#

monitor if we wanted to!

#

#

#

#

#

#

#ESESEFEHHES A

i No line ending v| |9600 baud

22

microcade

Before we move on, we just want to do a quick check to make sure everything is in place.
Go ahead and change the nCurrentPiece variable to say 1.

© int nCurrentPiece = 1} This should change the active piece toa
10 int nCurrentRotation = 0;

11 int nCurrent¥ = nFieldWidth / 2;
12 int nCurrenty¥ = 0; tetromine[1l] = ".. X, XL LKL oL oL "

diagonal piece.

Go ahead and upload this and check the serial monitor:

& comio - O x

_— -

So00000000089
So0000000009
So00000000089
Soo000000009
So00000000089
Soo000000009
5000000000089
S00000000009
5000000000089
S00000000009
S000000000089
S000000000089
S000000000089
S000000000089
5000000000089
So0000000008
5000000000089
9559999999399

o
=2 =]

W odh d e de M H e e 3 3 % Hh M 3 4

#
HEBESESEENS

ananannannng
[Autoscroll Mo line ending | |‘JEUU baud -

W oMk Bk M M Mk M Mk ¥ ¥ d M 3R ¥R ¥ Mk Hh ¥R

W

Here you can see two changes:

1. The shape has changed
2. The values representing the piece have changed.

23

microcade

If your serial monitor does not look like this, please take a read back in the tutorial/check
the final code at the bottom of the tutorial to see if you have any logical errors.

Go ahead and change the value back from 1to 0.

If we want to properly test the collosion we are going to need to add two aspecsts of the
game loop:

- Game Timing
- UserInput

Lets go ahead and add game timing!

Game Timing

When playing tetris, the tetrominos move, based on the user input or simply being pushed
down, after a given period of time. This is due to the implementation of game time. This

allows us to control the speed of the game meaning we can also control the difficulty of
the game.

In our game we have a common tick. Where the game progresses/moves on the tick. This
is why, when we paly Tetris, we get that lagged effect where the game progresses aftera
set period of time.

We will setup the variables and counting now and make some adjustments later.

14 int nSpeed = 10;| nSpeed = Game speed. This will be compared against
L5 int nipeedCount = 0;
le bool BForeeDowm = false:

the nSpeedCount.
nSpeedCount = will increase every game loop by 1.

vforceDown = Dictates when we are moving the tetromino (giving us the lage effect). If
this is True then the game progresses, if this is false then the game does not. We will be
using this more later on in the tutorial when we implement the ‘force down’ feature that
forces the tetromino down the playing field.

Add these variables above the void setup()
VUL Luopg) o
while ('bGameQver) // Main Loop

{

[
o O

Ll L L L

B // Timing ==
g nSpeedCfount+;

40 delay (nSpeed) ;

41 LForceDown = (nSpeedCount == nSpeed);

4z /¢ INput ==s===
43

an fd Tiw =wr Ta ~1-

Every game loop we will be adding one to the nSpeedCount. When this reaches the
nSpeed, aka 10, then we set the bForceDown variable to True. Later in the tutorial we will

24

microcade

use an if statement with this variable. This variable dictates if we are going to move the
tetromino or not.

[Line 39] Adds 1 to the nSpeedCount. This can be written as nSpeedCount = nSpeedCount
+1

[Line 40] Adds a simple delay using the nSpeed, otherwise the game is too fast. The
difficulty increases when this delay is decreases.

[Line 41] Here we have another ‘inline if statement’. We are using a comparative operator
‘=="that checks if nSpeedCount is equal to nSpeed.

(nSpeedCount == nSpeed) will return true if they are equal to each other. Aka if
nSpeedCount is equal to 10. If not, then this statement will return false

As the variable bForcedown is a Boolean, we are assigning the result of this comparison to
the variable.

Add this at the start of your game loop. See line numbers for a general guide, these may
vary to what you have!

User Input

When playing tetris, we give the user 4 basic controls. Left, right, down and rotate. Now

that we have a tetromino on the playing field, we need to give the user some sort of
control over the piece.

To do this we are going to create a function called CheckControls();

Before we create this function, we are going to need to define the variables we are going
to use:

30 float lastHoldTime = 0; [Line 30] Creates a float to hold the ‘lastHoldTime’
3l bool bEey[4] = {0, 0, 0, 0O}:
32 bool bRotateHold = true;

of a button. We will use this to reduce button
debounce (we will look into this in a bit). Thisis a
float as it will hold milliseconds. 1 second is 1000 milliseconds therefore we need a data
type that has a large range as this will hold the last time a button was pressed. If the user
doesn’t press a button for 5 seconds then the float will be 5000!

[Line 31] bKey[] Is an array that will hold the final button outputs. Its Boolean as a button
can either be on or off.

[Line 32] bRotateHold. To stop the tetromino from violently spinning when we press the
button, we need to detect when the button is being held. We will use an if statement to
only rotate the tetromino once if the button is being held. This way the user has more
control over the rotations - one press = one rotation, regardless of how long you hold the
button down for.

25

microcade

Be sure to add this bit of code above the void setup()

Using Arduboy

Now we is a good time to add the Arduboy?2 Library that will allow us to use the buttons.

Lets add this library to the top of our code

1 #include <Arduboy?.h>
Z RArduboy? abovy;

Next we need to initialize it in void setup()

T void setup() { [Line 40] Initializes the aboy library
8 Serial . begin(S&00) ;

Ll Ll Cad

Lo

[Line 41] Clears the screen/screen buffer and sets
40 aboy.boot();

4l aboy.clear();
a7 later.

A e WAL AL ATITET OTTATIETY 1 AT

he cursor to position 0,0. We will get into this more

26

microcade

Now that we have defined the variables and setup Arduboy? Lib, we can jump into
creating the function:

void CheckControls() D

bEey[0] = (aboy.pressed(RIGHT _BUTTON) && (millis() - lastHoldTime) > 100) # 1 : 0O;
bEey[l] = (aboy.pressed(LEFT_BUTTON) && (millis() - lastHoldTime) > 100) # 1 : 0O;
bEey[2] = (aboy.pressed(DOWNT_BUTTON) && (millis() - lastHoldTime) > 100) # 1 : 0O;
bEew[3] = aboy.pressed(i BUTTON) »

J/53imple Buffer

int Sum = 0O;

for (int i = 0; i < 47 i++) {
Sum = Sum + bEey[i]:

}

if (Sum '= O) {
lastHoldTime = millis();

}

J// Handle player movement

nCurrent¥ += (bEey[0] s& DoesPieceFit(nCurrentPiece, nCurrentFotation, nCurrentX + 1, nCurrent¥)) » 1 : 0;
nCurrent¥ -= (bEey[l] && DoesPieceFit(nCurrentPiece, nCurrentFotation, nCurrentX - 1, nCurrent¥)) » 1 : 0;
nCurrent¥ += (bEey[Z] &s DoesPieceFit(nCurrentPiece, nCurrentFotation, nCurrent¥, nCurrent¥ + 1)) » 1 : 0;

// Rotate, but latch to stop wild spinning

if (bEey[3])

{
nCurrentRotation += (bRotateHold ss DoesPieceFit(nCurrentPiece, nCurrentRotation + 1, nCurrentk, nCurrent¥)) » 1 : 0;
bRotateHold = false;

}

elae
bRotateHold = true;

As this is quite a long function with many pieces, we will go through it section but section.
The first part is to get the user inputs:

bEey[0] = iahny.pre;%ed(RIGHT_BUTTDHJ s& (millis{) - lastHoldTime) > 100) = 1 : O:
bEey[1] = (aboy.pressed(LEFT_BUTTOIN) && (millis() - lastHoldTime) > 100) 7 1 : 0O;:
bEey[Z] = (abov.pressed (DOVI_EUTTON) && (millis=() - lastHoldTime) > 100) = 1 : 0O;
bEey[3] = aboy.pressed{i BUTTON) ;

Look familiar? We are using an inline if statement or ternary operator again!

Here we are assigning each element in the array bKey to the result of a user input.
Element 0 in the array stores the right button result, element 1 stores the left button
result, etc.

So what does this part do?
bEey[0] = (aboy.pressed(RIGHT EUTTON) && (millisi) - lastHoldTime) > 100) 2 1 : 0:

This stops button debounce.

27

microcade

Debounce: What is it

When we click a button once, currently it o oo -

L
=
=

registers as 5 or 6 clicks. This is called
ButtonDebounce.

The reason the Arduino reads it as 5 or 6
presses is because when we click the
button down, the Arduino is fast enough to

read the signal multiple times. To remove
this “bounce”, and read one press as a
single press, we need to add “button debounce”

Boh WL ACE b - Clasr sumpat

To achieve this, we Ignore all inputs for 100 milliseconds after we register a click.

If we take a look at our line of code again, we can see that we are using millis() to detect
when

Gets RIGHT_BUTTON button

v

bEey[0] = ||:al:u:uy.presse-:l(P.IGI-IT_BUI'I'III-I] & [fmilli={) - lastHoldTime) > 100) | 1 : 0O;

This acts as a delay that doesn’t interrupt the program - the delay(); command stops

the program for the specified amount of time. This ignores all inputs for 100
milliseconds, removing the debounce. Current time (millis()) minus last time pressed
(lastHoldTime()) must be greater than 100. Aka ignore all inputs that have been

The millis() function will returns the amount of milliseconds that have passed from when
the program started. We can use this as a time stamp.

Note that we use the ‘I’ NOT logic operator to inverse the result of the digitalRead(). We
do this as we set the pinmode earlier as INPUT _PULLUP meaning when the butoton is
pressed, the value is 0. By adding the ‘" / not operator, we are inverting the result back
meaning that when the button is pressed, 0 will be inverted to 1.

So when the button is pressed, and when we have waited 100 miliseconds from the last
button press, set bKey[0] to 1. If not, set it to O.

This line can also be written as:

28

microcade

13g

if[hhny.pressed[RIGHT_BUTTDH] a6 (millis() - lastHoldTime) = lDDb{
bEey[0] = 1:

}

elae]
LEey[0] = 0O;

Note that we are going to need to update the lastHoldTime when a button is pressed. To
do this, we have to take a look at the next section of code

176 JiSinple Buffer Here we create a variable called Sum.
177 int Sum = 0;

178 For (int i = 0: i < 4: i++) { We use a for statement to loop through
G

the bKey[] array. Every iteration, we add

1748 Sum = Sum + bEey[i]:

180} the bKey[] value to the sum. If a button is
181 if (Sum '= 0) | pressed, the sum will be 1, if a no buttons
182 lastHoldTine = millisi); are pressed, then the value will be 0.
183}

We then use a simple if statement to
check the sum, if it is not equal to 0, then update the lastHoldTime with the current time
(millis())

Notice how the rotate key/a button, does not have the debounce code. This is because we
want the down key to be much quicker then the rest of the buttons as the player is forcing
the part down. When we upload the code and test out the controls, you will see the
difference between the left, right and rotate buttons compared to the down button - it is
much faster.

bEey[3] = aboy.pressed(i BEUTTON) ;

Now that we know what buttons the user has pressed; we need to actually move the
tetromino. To do this we need to edit the tetrominos position etc.

185 // Handle player movemsnt

18 ncurrent¥ += [(bEey[0] s& DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentk + 1, nCurrentY)) = 1 : 0;
T ncurrent¥ -= [bEey[l] s& DoesPieceFit(nCurrentPiece, nCurrentFotation, nfurrentk - 1, nCurrentY)) = 1 : 0;
188 ncurrent¥ += (bEey[2] s& DoesPieceFit(nfurrentPiesce, nCurrentFotation, nfurrentk, nCurrent¥ + 1)) = 1 : 0

Here you can see that we also have a tertiary operator. The overall statement is saying:

If the button has been pressed and the piece fits the position we are moving it to (no
collision), add 1 to the current x or y position.

Let’s break down these lines:

nturrent¥ += (bEey[0] &s DoesPieceFit(nCurrentPiece, nCurrentFotation, nCurrent¥ + 1, nCurrent¥)) » 1 :

Can be written as:

29

microcade

0:

if (bEev[0] s& DoesPieceFit(nCurrentPiece, nCurrentBFotation, nCurrentX + 1, nCurrent¥)) {
nfurrentx += 1

1
elze |
nturrentx += 0

bKey[0] returns either 1 or 0. 1 if the button has been pressed or 0 if it hasn’t. For
conditions, 1 can also be classed as True.

Next we called our collision detection function ‘DoesPieceFit()’. This function requires the
below parameters:

nCurrentPiece = The current tetromino. A value from 0 to 6

nCurrentRotation = The current rotation of the tetromino so we know how to index the
tetromino

nCurrentX + 1 = Is where the tetromino is trying to move. As this is for the bKey[0] which is
the right button, we are trying to shift the tetromino one block to the right therefore we
add one to the current x position to get the ‘future’ position/where we want to move it

nCurrentY = As there is no change in the y coordinates, we do not add or subtract the
coordinate.

This will return either true or false.

As we are using an and operator between the two statements, if both statements are true,
then 1lis returned. This means the line would be:

NnCurrentX +=1;

However, if the key hasn’t been pressed or the piece does not fit, then the part will not
move there as we are adding 0 to the nCurrentX. The line would read as:

NnCurrentX += 0;

This format follows through for the next 2 statements. However:

185 /4 Handle player movement
18 nCurrent¥ += (bEey[0] && DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX + 1, nCurrent¥)) = 1 : 0;

nCurrent¥ -= (bEey[l] && DoesPieceFit(nCurrentPiece, nCurrentPotation, nCurrentX - 1, nCurrentY¥)) = 1 : 0O;
188 ncurrentY += (bEey[Z] && DoesPieceFit(nCurrentPiece, nCurrentPotation, nCurrentck, nCurrentt¥ + 1)) = 1 : 0;
[Line 187] As it is gor bKey[1] or the Left button, we use ‘-="instead of ‘+="to minus 1 from

the coordinate if the piece can fit there.

[Line 188] Here we are editing the y coordinates. It’s the same principal as the above lines
however we edit the Y coordinates. If the down button is pressed and the piece does not
collide with the boundaries/other pieces, then move the piece down (add 1 to the
coordinate).

The final part of the controls Is to rotate the piece:

30

microcade

150 J// Rotate, but latch to stop wild spinning

191 if (bKey[3])

192 |

193 nCurrentPotation += (bRotateHold cc DoesPieceFit(nCurrentPiece, nCurrentRotation + 1, nCurrentX, nCurrent¥)) = 1 : 0;
194 bRotateHold = false;

195 }

1898 else

157 bEotateHold = true;

198 |}

[Line 191] If the rotation button, or y button, has been pressed then:
1. [Line 193] Check if the rotated piece does not collide with any boundaries/pieces.

193 nCurrentFotation += (bRotateHold s& DoesPieceFitinCurrentPiece, nCurrentRotation + 1, nCurrentX, nCurrentY)) # 1 : 0;

We use the “DoesPieceFit()” function to see, when we rotate the tetromino, if there are
any collisions.

This is similar to what we just looked at with the nCurrentX and nCurrentY variables
however instead of adjusting the coordinates we are adjusting the rotation, seeing if there
are any collisions and then returning the result.

If we look at the parameters, we are adding 1 to the nCurrentRotation. If, when we rotate it
in that orientation, there are no collisions, we return true.

2. Check if bRotateHold is true, if the button is being held down then this will be false
(due to line 194) and means, due to the and statement, it wont rotate. Lets look at
this in more detail below:

Dealing with debounce/overspinning the Tetris piece.

To ensure the user gets full control over the tetromino piece, it makes sense to have one
button press per rotation. To do this we use the bRotateHold variable.

When the button is released, the bKey[3] is false therefore the ‘else’ section of the if
statement runs and the bRotateHold is set to true again, allowing for another rotation to
take place. If the button was being held down then:

1. Onthe first iteration, the nCurrentRotation would add 1 (assuming there is no
collision) and the bRotationHold would be set to false

2. Onthe second iteration, with the button still being held down, even if the piece can
be rotated with no collision it will not rotate as the bRotateHold variable is set to
false. The only way the piece can be rotated is if the bRotateHold is True. The only
way to do that, is if the button is released and the else statement is ran meaning
the bRotateHold is set back to True.

Therefore, going back to line 193,
193 nCurrentPotation += (bRotateHold ss DoesPieceFit (nCurrentPiece, nCurrentRotation + 1, nCurrentX, nCurrent¥)) # 1 : 0;
If both conditions are true, then the statement reads:

nCurrentRotation += 1;

31

microcade

Meaning the piece is rotated

If any condition is false. AKA the piece does not fit or the button is being held down, the
statements reads:

nCurrentRotation += 0;

There is no change meaning the piece isn’t rotated.

Add this function underneath your void loop() and make sure to call it in your game loop

like so:
55 JF Timing ==============s===========s=oss=s=s=ss=ss=s====s
Se nopesdCounti+:
57 bForcelown = (nSpeedCount == nipeed);
15 /7 Input ====================z==========z=================
59 CheckControlsi); |
&0
gl J¢ Draw Field

for (int ¥ = N2 ¥ < nFieldWlidth: w0

Now go ahead and run the code. You should be able to see your tetromino moving in the
serial monitor as you press the buttons on your console. Your console, at the moment, is
acting like a controller!

Here you can see some

oo e
oo e
o

screenshots from me just

oo

moving around the start piece
and rotating it.

every single element multiple
times, it is very slow. Which is
why you have to press a button

#

#

#

#

#

#

#

#

: Note that: As we are printing
#

#

#

#

#

#| for awhile before it moves.
#

#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

He ok e Yk Sk Yk e Yk % %k Yk Yk G Yk Yk 4k Yk 4k

When we add the graphics

FHERFERERY FHESEUEEEY

| #
#I#
#|#
| #
#|1#
| #
#|1#
#||#
£ |I#
#(|#
#||#
#(|#
#|#
g || #
| #
g || #
| #
| #

FERERIEHES

FHERSUEHES

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

BEssbbREE engine and begin to render it on

screen, you will get a responsive, Tetris like, game! Hang in there!

Adding the force down feature

If you have played Tetris, you know that the piece gets forced down after a set time
period. Currently, our pieces are static and aren’t forced down. Lets go ahead and add this
feature:

32

microcade

52 wold loop() {
53 while ('bGamelver) // Main Loop

54 {

55 /¢ Timing ======================================z========
SE naipeedCount++;

57 bForcelown = (nSpeedCount == n3peed):

58 J/ Input =======================================z========
58 CheckControls();

=il

gl /4 Foree the piece down the playfield if it's time

EZ if (bForceDown)

B3 {

64 S/ Test if piece can be moved down

B5 if (DoesPieceFit(nCurrentPiece, nCurrentFotation, nfurrentX, nCurrent¥ + 1)) {
BE nturrenty+; // It can, =o do it!

67 }

&8 else

£9 {

70 STt can't! Lock the piece in place

71

72 S¢ Check for lines

73

T4 ff Pick New Piece

75

76 SS IE piece does not £it straight away, game owver!
77 }

78 }

Here we can see the game starting to come together, lets take a look at what we need to
add:

[Line 62] This is that if statement | mentioned beforehand. If the piece is meant to fall
down, then run the code, if it is not meant to fall down, skip over this and go straight to
drawing the field/current piece. This is because we want the piece to fall down at a
certain time. To get this time, we go back to the code we wrote before hand on lines 56
and 57.

[Line 56] Each game loop we add 1 to the nSpeedCount.

[Line 57] When the game loop has ran nSpeed amount of times (10) then we can set
bForceDown to true. We do this by using the equal to operator that compares the two
values and returns if it is true or not.

If nSpeedCount is equal to nSpeed, aka if the game loop has iterated 10 times, the
statement will read like this:

bForceDown = True

If nSpeedcount is not equal to nSpeed, aka if the game loop has not tierated 10 times, the
statement will read like this:

33

microcade

bForceDown = False
By doing this, we are forcing the tetromino down every 10 game loops.

Going back to Line 62], now, if the game loop has ran 10 times we can run this if
statement and move the piece down. However, we need to firstly check if the piece can
actually be moved down:

64 S/ Test if piece can be moved down
B5 if (DoesPieceFitinCurrentPiece, nCurrentBotation, nCurrentX, nCurrenty¥ + 1)) {
BE nturrent¥+; // It can, =o do it!

a7 }

Using the DoesPieceFit() function, we simply check if the piece can be moved down. We
do this by adding 1 to the nCurrentY to see if, if the piece were in that position, would it
collide with any boundaries/any other pieces? If it doesn’t collide, then we can go ahead
and make that change to the nCurrentY in line 66.

If it doesn’t then we need to do a whole bunch of checks

&8 else

B9 {

70 SO It can't! Lock the piece in place

71

72 J¢ Check for lines

"."3

74 J¢ Pick New Piece

75

76 S/ 1 piece does not fit straight away, game over!

77 }

e If the piece cant be moved down anymore, that means it has reached the bottom
and is now ready to be ‘locked in’.

e This means we also need to check to see if any lines have been formed.

o Asthe pieceis now locked in and is not ‘active’. We need to drop in a new piece for
the user to control.

¢ If this new piece does not fit straight away, then the game is over.

For those that haven’t played Tetris before:

- When you align various tetrominos to fill a row, its called a line. This line then
disappears and you get 100 points. The aim is to get as many lines as possible
as you get the most points from creating lines and also to clear the board.

- In Tetris, you lose when a piece cannot be placed anymore, aka you stack all
the pieces to the top.

So lets get started filling in the blanks in our code. Lets start with line 76 “If the piece does
not fit straight away, game over”

34

microcade

B S 1Ef piece does not £it straight away, game over!
bGamelver = 'DoesPieceFitinCurrentPiece, nCurrentFotation, nfurrentX, nCurrenthd

78 }
Quite simply, we use the varaible that dictates if the game loop runs or not - bGameOver.
As menitioned earlier, if this varaible is true, then the game loop will not run.

Here we check if the piece fits by using our “DoesPieceFit” function. However, note that
we inverse the result. This means, if the piece does not fit, the return of false will be
flipped to return true. Therefore, if the piece does not fit, bGameOver = True therefore the
game loop will not run and the game finishes.

Go ahead and add this line into your code.

Next we are going to ‘pick the next piece’ on line 74:

72 /¢ Check for lines

7 3

74 /¢ Pick New Piece

75 nturrentx = nFieldWidth / Z:
76 nCurrent¥ = 0;

nCurrentFotation = 0;

78 nburrentPiece = randi) % 7;

1
hrl=}
78 |

[}

J¢ 1f piece does not £it straight away, game owver!
bameldver = !DoesPieceFit (nfCurrentPiece, nfurrentFotation, nCurrent¥, nCurrent¥);
}
}

-

[e R a1
[EVI]

[Line 75] We reset the nCurrentX coordinate back to the center

[Line 76] We reset the nCurrentY coordinate back to 0 meaning the new shape is
produced at the top,

[Line 77] We reset the nCurrentRotation to 0 so the shape is in its start position

[Line 78] We set nCurrentPiece to a random number between 0 and 6. We can set the
range using modulus 7 (meaning from 0 to 7). The range is exclusive meaning the
maximum range (7) is not counted (the max is one less, in this case it is 6).

This is pseudo random, meaning each time we run the program, the ‘random’ variables
will be the same each time. E.q. if the randomly generated numbers are
0,5,2,3,4,6,0,0,1,6,3 and we then restart the Arduino, the same sequence of numbers will
be returned each time.

Add this set of code to line 74

Next we need to lock our piece into the field.

35

microcade

(k] else

69 {

70 /It can't! Lock the piece in place

71 for (int px = 0; px < 4; px++)

72 for [ﬁnt py = 0; py < 4; py++ﬂ

73 if (tetromino[nCurrentPiece][Rotatei(px, py, nlfurrentRotation)] !'= '.')

T4 pField[(inCurrentY + py) * nFieldWidth + (nCurrent¥ + px)] = nCurrentPiece + 1
ia

TE S/ Check for lines

/4 Pick New Piece
nCurrent¥ = nFieldWidth / 2:

oo

g0 nfurrentY = 0;

g1 nfurrentRotation = 0;

B2 nCurrentPiece = rand() % 7:

83

04 A/ IE piece does not £it straight away, game over!

85 bGamelver = 'DoesPieceFitinCurrentPiece, nCurrentPotation, nfurrentX, nCurrentY):;
g

}

m

[u]
1

il

[Lines 71 & 72] These two for statements allow us to iterate through the array element by
element.

[Line 73] Checks the tetromino shape with the current position. This returns a string in
which we then index the string ([Rotate(px,py,nCurrentRotation)]) Think of this
statement as:

For example:

“UXUXXC XL “[Rotate (px,py,nCurrentRotation)] which will return the value at the index
position.

In this condition, we are comparing that value with ‘X’ If it is equal to X, then set then run
line 74. If not, don’t, as this would be empty space.

[Line 74]
pField[infCurrenty + py) * nFieldWidth + (nfurrentk¥ + pxi1] = nCurrentPiece + 1

Here we get the position of the current ‘block’/element we compared earlier in the
tetromino, from the field. We are then assigning it the nCurrentpiece + 1. We add oneas
the index of the tetrominos starts from 0, however currently in our field, we have 0 set as
empty space, therefore we add one to offset that. If tetromino 0 was being ‘locked in’/
‘set’ and we didn’t add 1, then the piece would blend in with the empty space.

This also comes in handy when assigning the output. Remember this line?

93 for (int ¥ = 0; ¥ < nFieldHeight; v++)
G4 {
G5 | output[(¥ * nFieldWidth) + x] = " ABCDEFG=#"[pField[iy * nFieldWidth) + =]]:
S9E }
g7 }
g8
36

microcade

Well, the index 0 of the string is empty space. Index 1, however, is A which represents the
first tetromino (as each letter represents a different tetromino).

One last thing, we need to set the speed back to 0 now that we have foced the tetromino
down 1 block:

&0

gl /4 Force the piece down the playfield if it's time

E2 if (bForceDown)

B3 {

g4 f45et speed back te O

] nipesdCount = 0;

E6 |

E7 S Test if piece can be wowved dowm

g8 if (DoegPieceFit(nCurrentPiece, nCurrentPotation, nCurrentk, nCurrentY + 1)) {
£9 nCurrent¥+; // It can, =zo do it!

70 }

71 elae

12 {

73 /4 It can't! Lock the piece in place

T4 for (int px = 0; px < 4; px+)

75 for (int py = 0; py < 4; py++)

TE if (tetromino[nCurrentPiece][Rotate(px, py, nCurrentRotation)] '= '. ')
77 pField[inCurrentY + py) * nFieldWidth + (nCurrent¥ + px)] = nCurrentPiece + 1;
78

79 /4 Check for lines

= O

// Pick New Piece

nCurrentX = nFieldWidth / Z;
nturrent¥ = 0;
nfurrentRotation = 0;

[V 3 |

=

nCurrentlPiece = rand() % 7:

-1

f/ 1f piece does not fit straight away, game over!
bhamelver = !'DoegPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX, nCurrent¥):

L O Y O Y Y« i« O s |
woom [,

- o
—_—

N

Go ahead and copy the above code and lets upload and open serial monitor and see what
happens!

37

microcade

& comno - o x You should be able to

| =nd || move your piece around,
so000000000 "l butalso let it fall every
Sooo0oonooong .
900000000009 game tick.
S0000000000%
Sooo0oonooong .
500000000008 You should also notice
Sooo0oonooong .
500000000009 that when it reaches the
Sooo0oonooong .
500000000008 bottom, not only does it
900000000009
900000000009 stoo and produce a new
Sooo0oonooong
500000001005 piece at the top, the
900000001009
goo000onoloog H
o pField array changes

999999599999

with the ‘locked in’ part!

A

: s We are almost ready to
A # .

! ! move to the graphics

: : engine however we hae
.

' ' a couple things left.

#

. . One major feature being
#

A what happens when we
A # .

A ¥ get a full line! Here you
A

PPPRTPETPITY can only lose - you get
500000000009 v no points and the lines

Mo line ending | |9600 baud |

don’t disappear. Lets fix

that.

38

microcade

Checking for lines

Before we start, we need to declare an array that will store the y coordinate of the line so

we know which row is a line:

17
18 int Lines[4] = {0, 0O, O, D}d
15

Be sure to add this before the void setup()

'?C\l

79 f¢ Check for lines

an for {(int py = 0; py < 4; py+t)

gl if (nCurrent¥ + py < nFieldHeight - 1)

g8z {

83 bool blLine = true;

24 for (int px = 1 px < nFieldWidth - 1; px++)

a5 blLine s= (pField[(nCurrent¥ + py) * nFieldWidth + px]) !'= 0;
BE

a7 if (bline)

it {

859 S/ Bemove Line, set to =

S0 for (int px = 1; px < nFieldWidth - 1; p=+) |
Sl pField[inCurrent¥ + pv) * nFieldWidth + px] = 8:
g2 }

93

g4 SiArray push back

95 for {int h = 0; h < 4; h++) |

96 if (Lines[h] == 0) {

97 Linezs[h] = nfurrent¥ + py:

S5 break;

g9 }

a0 }

1ol }

10z }

103 |

[Line 80] The first thing to note is, to be optimal, we only need to check the rows where
the last tetromino was. This for loop takes the 4 rows from the tetromino and translates
them to the field, by adding nCurrentY on line 81.

[Line 81] This is boundary check that ensures that we are not checking things beyond the
boundary of the Field.

[Line 83] The first thing we do is assume there are lines, by setting bLine to true. This
means we dre trying to prove that there are no lines by checking if there is any empty
space. If there is any empty space, then that row cannot be a line.

39

microcade

[Line 84] This for loop checks every element/brick in the column (apart from the two
sides, hence starting from 1 (int px = 1) and minusing 1 from nFieldWidth (nFieldWidth -1)
meaning we take out the first and last bricks/elements as these are boundaries and we do
not want to check them.

[Line 85] bLine &= (pField[(nCurrentY + py) * nFieldWidth + px]) != 0;

Here we are checking if the element/brick in the field is empty or not if it is empty, we set
bLine to false.

We firstly use our formula to find the index ((nCurrentY + py) * nFieldWidth + px) to get
the element in pField to compare. The (!=) NOT EQUAL sign will then compare this value
with O, if it is O, then it will return False, if it is anything other then 0, then it will return True.

Lets take a closer at the operator in front of bLine:

&= is a conditional operator that both assigns and compares the value. E.q.
If VarT is true and VarF is false:
VarT &= VarF will assign VarT as false as it is an AND condition.
VarT &= VarT2 will assign VarT to true as true AND true returns True.

In our case, bLine is by default true. Therefore, we are comparing the result of the
comparison with the bLine variable. If the condition returns false, where the current
element is not empty, then:

bLine (TRUE) &= (pField[(nCurrentY + py) * nFieldWidth + px]) != 0 (FALSE);

Here we are comparing true and false, as it is an and statement and requires both sides to
be true, the bLine var is set to false.

If it is anything other then 0 and returns true, then bLine is set to true.

Now if we have reached this point in the code, and bLine is still true, then it must be a
complete line. We will then go through and set all the values to ‘=" signs to get an
animated line.

40

microcade

a7 if (blLine)

a8 {

ag /¢ Bemove Line, set to =

S0 for (int px = 1; px < nFieldWidth - 1; p=++) |
Sl PField[(nCurrentY + py) * nFieldWidth + px] = 8:
g9z }

93

94 SAArray push back

g5 for jint h = 0; h < 4; ht+) {

S9g if (Lines[h] == 0) {

a7 Lines[h] = nCurrentf¥ + pys

S8 break;

g9 }

Lon }

1ol }

[Line 87] Check if bLine is true, if it is true, then we have a line and must remove it.

[Line 90 to 91] This for statement iterates through the x coordinates in the line -
excluding the boundary elements/bricks. This allows for line 91 to convert each pField
element (getting the index position from the formula) into an 8, which if we look at our
string [“ ABCDEFG=#"“](from when we convert pfield into the output) this is a ‘=" sign
which, when the whole row is converted creates a line.

[Line 95 to 98] Iterates through the Lines array that we created earlier, and stores the
column/y coordinate of the lines. This means we can, in a later date, remove the lines.
This means the user will see the line, wait a little, then it will be removed. Creating a
rewarding animation.

[Line 95] For statement iterates through the loop

[Line 96] If the current index position in the array is 0 (empty) then [Line 97] store the
column number that has the line (nCurrenty+py).

[Line 97] As we are doing one line per loop, we can use the break command to break out
of the for loop, meaning we are not setting any other element. This means, if there are
multiple lines, they wont overwrite the data in the array, they will go to the next element
in the array.

Be sure to add this section of code after the ‘Lock Piece in place’. See lines for reference.

Removing Lines

Now that we have replaced the line with ‘=", we need to remove the line. Be sure to add

the below section of code after the //Draw Current Piece section of code

41

microcade

128 /f Draw Current Piece

127 for (int px = 0; px < 4; px++) |

128 for i(int py = 0; py < 4; py+H) |

129 if (tetromino[nfurrentPiece][FRotate (px, py, nCurrentFotation)] '= '. ')
13 {

13 output[inCurrentyY + py)*™nFieldiidth + (nCurrentX + px)] = nCurrentPiece 4+ £5;
3z }

33 }

13 }

13

Lae //Femove Lines

13 int sum = 0;

13 for (int 1 = 07 1 < 47 i++) |

139 sum = sum + Lines[i]:

140 }

141

14z if (sum !'= 0)

143 {

144 /f Display Frame (cheekily to draw lines)

145 JutputFrame() ;

146 for (int i = 0; i < 4; i++) []

147 if {Lines[i] '= 0} {

l4g for (int px = 1; px < nFieldWidth - 1; px++)
145 {

150 for (int py = Lines[i]; pv > 0; pyv—-) {
151 pField[py * nFieldWidth + px] = pField[(py - 1) * nFieldWidth + px]:
152 }

153 pField[px] = 0:

154 }

155 }

158 elge |

157 break;

158 }

159 }

L&0

lEl for {int g = 0; g < 4; gt+) |

lE2 Line=s[g] = 0;

163 }

14 }

lE5

LEE Jr0utputField()

LE7 JutputFrame () :

lgg }

Leg9 |}

42

microcade

138 //Bemove Lines

137 int sum = 0;

138 for {(int i = 0; 1 < 4; i+ |

139 sum = sum + Lines[i]:

140 }

141

14z if (sum '= 0)

143 {

144 JS Display Frame (cheekily to draw lines)

145 JutputFrame() ;

146 for (int i = 0; i < 4; i++) []

147 if {(Lines[i] '= 0} {

148 for (int px = 1; px < nFieldWidth - 1; px++)

145 {

150 for (int py = Lines[i]: py > 0: py—-) {

151 pField[py * nFieldWidth + px] = pField[(py - 1) * nFieldWidth + px]:
152 }

153 pField[px] = 0:

154 1

155 }

156 else |
157 break:
158 }

155 }

Le0

1l for (int g
l&z Lines[qg]
1E3 }

lg4 }

0: g < 4: g+ |
o;

[Line 142] The first thing we need to do is check if there are any lines. If there are then we
need to remove them. To check this, we are going to add up all the elements in the array,
if it is greater then 0, then there are lines in the array meaning we need to remove them

[Line 137] Firstly we create the sum variable. Note that each game loop this will be
recreated and set to 0.

[Line 138] The for statement then iterates through the array (4 times as there are 4
elements in the array).

[Line 139] We then add the elements in the line array to the sum each loop.

Now we are ready to check the sum on line 142. If there are no lines in the array then this
will be false and wont run the code. However, if there is then it will run the code to remove
the lines:

[Line 145] We firstly want to output the frame to draw in the ‘="/line before we remove the
lines.

[Line 146] We then loop through the lines array, 4 times. This is so we can get the
elements in the array.

[Line 147 & 156-157] If the element is not empty (0 is empty) then thereis a line to be
removed, if not then we have removed all of the lines and should break out of the loop.

43

microcade

To actually remove the lines we must:

[Line 148] Iterate through each element/brick using its x coordinate. We ignore the
boundaries by starting the iteration at 1 and ending it before the boundary (nField -1).

[Line 150] Here we have a for loop that counts down. We start at the row with the line (int
py = Lines[i]) and iterate until the y coordinate is 1 (py > 0) - minusing 1 each time (py--
). We stop at 1 as if we stopped at row 0, we would have an error as row 0 cannot
copy/move down the data from the row above itself as there is now row above itself. To
fill in the top row, we use line 153 to set the top row to all 0’s. Overal, this means we are
going up the playing field, a row at a time.

[Line 151] pField[py * nFieldWidth + px] = pField[(py - 1) * nFieldWidth + px];

As we are going up the board, row by row, we assign the current pField element with the
pField element from above/the next row. This means the whole board gets shifted down
as we iterate up the rows. Meaning the line is removed AND all the pieces are moved
down.

[Line 153] As we have moved all the values down, the top values will not have a value.
Therefore, we are assigning each top value to 0 (as empty) each time we loop through
the cloumns (y coordinates)

[Lines 161 & 162] Iterate through the Lines array and resets all the values to 0. This gets It
ready for the next game loop.

That was a lot of code! Before we move on, check your code to makre sure your void loop()
looks similar to our void loop() below:

void loop() {

while (!bGameOver) // Main Loop

{
// Timing e === e e e e e e e === ———C
nSpeedCount++;
bForceDown = (nSpeedCount == nSpeed);
// Input SESSSSSsSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS========
CheckControls();

// Force the piece down the playfield if it's time
if (bForceDown)

{

//Set speed back to ©
nSpeedCount = 0;

// Test if piece can be moved down
if (DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX, nCurrentY + 1)) {

nCurrentY++; // It can, so do it!
}
else
{

// It can't! Lock the piece in place

for (int px = ©; px < 4; px++)

for (int py = 0; py < 4; py++)
if (tetromino[nCurrentPiece][Rotate(px, py, nCurrentRotation)] != '.")

44

microcade

pField[(nCurrentY + py) * nFieldWidth + (nCurrentX + px)] = nCurrentPiece

+ 1;
// Check for lines
for (int py = ©; py < 4; py++)
if (nCurrentY + py < nFieldHeight - 1)
{
bool bLine = true;
for (int px = 1; px < nFieldwWidth - 1; px++)
bLine &= (pField[(nCurrentY + py) * nFieldWidth + px]) != 0;
if (bLine)
{
// Remove Line, set to =
for (int px = 1; px < nFieldWidth - 1; px++) {
pField[(nCurrentY + py) * nFieldWidth + px] = 8;
}
//Array push back
for (int h = 0; h < 4; h++) {
if (Lines[h] == 0) {
Lines[h] = nCurrentY + py;
break;
}
}
}
}
// Pick New Piece
nCurrentX = nFieldwWidth / 2;
nCurrentY = 0;
nCurrentRotation = 0;
nCurrentPiece = rand() % 7;
// If piece does not fit straight away, game over!
bGameOver = !DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX, nCurrentY
)s
}
}

// Draw Field
for (int x = @; x < nFieldWidth; x++)
{
for (int y = @; y < nFieldHeight; y++)

{
output[(y * nFieldWidth) + x] = " ABCDEFG=#"[pField[(y * nFieldWidth) + x]];

}

// Draw Current Piece
for (int px = @; px < 4; px++) {
for (int py = ©; py < 4; py++) {

if (tetromino[nCurrentPiece][Rotate(px, py, nCurrentRotation)] != '.")
{

output[(nCurrentY + py)*nFieldWidth + (nCurrentX + px)] = nCurrentPiece + 65;
}

}
}

//Remove Lines

int sum = 0;

for (int 1 = 0; 1 < 4; i++) {
sum = sum + Lines[i];

45

microcade

}

if (sum != 0)
{
// Display Frame (cheekily to draw lines)
OutputFrame();
for (int i = @; i < 4; i++) {
if (Lines[i] !'= @) {
for (int px = 1; px < nFieldwidth - 1; px++)
{
for (int py = Lines[i]; py > 0; py--) {
pField[py * nFieldWidth + px] = pField[(py - 1) * nFieldWidth + px];

pField[px] = ©;

}

else {
break;
}
}

for (int g
Lines[g]
}
}

//O0utputField();
OutputFrame();

}

0; g < 4; g++) |
0;

}

Adding Increasing Difficulty

Now that we have a fully working Tetris game, we need it to get harder. Let’s increase the
difficulty as time goes on:

Firstly we need to count how many game ticks have taken place. We are going to need a
variable to count this:

ii bool bForceDown = fals=; nTickCount will keep a count, each game loop, of
If int Lines[4] - {0, 0, 0, 0}: how many pieces have been placed.

18

20 int nTickCount = 0;

=1

22 //Controls

La
Lad

#define ¥ _Buttom 7 // FEotate
#define Left Button AZ

La
iy

46

microcade

b4
:: if {bForceDown) [Line 72] Each game loop, the
67 { nPieceCount will increase by 1
1 ; . . .

//3et speed back to 0 [Line 73] If the nTickCount is
&9 nspeedCount = 0; o]
70 divisable by 50 with no remander,
71 ra TTl'ur'I.=|1'|=- difficul Ly every L0 ticks then we need to reduce the Speed
7z nTickCount++; ' .
73 if (nTickCount % 50 == 0O) [Llne 74] If the nspeed is greater
74 if (nSpeed »= 10) nSpeed--; than or equal to 10, then reduce the
75 .
= nSpeed by 1. This means the game
77 // Test if piece can be moved down wont reduce the dlfflCUlty if the
7d if (DoesPieceFitinCurrentPiece, nCurrer gpeed is 9. Meaning the game is till
75

playable but much faster.

Copy the above code. The section highlighted should go after the nSpeedCount = 0. See
line numbers for a rough reference,

47

microcade

Adding Score

Now that we have a fully working tetris game, we are missing one key feature. A scorel!

Firstly we need a varaile to keep track of the score:

19 nScore will keep the score.

20 int nTickCount = 0;

=1 We need to add the score in two places:

Z2 int nicore = 0; .

- - +25 for every piece placed.

24 j/Controls - +100 for every line formed
110 break; If we are picking a new piece, that means
111 } .
112 } that a piece has been placed. Therefore,
113 } on line 116, we can add +25 to the score as
114 } .
115 a piece has been locked down/placed.
1le nicore += 25; . .
71 The next bit of code, lines 118 to 123,
e //hdd score for each line loops through the lines array. For every
118 for (int 1 = 0; i < 4; i++) | .
120 if (Lines[i] '= 0] { element that isn’t equal to 0 (aka for
1ol nicore += 100; every line formed), the score gets +100.
1Z2 }
if_l } Add these lines of code before the ‘pick a
175 77 Tick Wew Fiece new piece’ section of code. See the line
128 nCurrent¥ = nFieldWidth / Z; numbersfor reference.
127 nCurrent¥ = 0;
128 nCurrentFotation = 0;
129 nCurrentPiece = rand{) % 7;
130
131 S/ IE piece does not fit straight awva
132 bramelver = !'DoesPieceFit(nCurrentPie
133 }
134 }

135

Finally, we need to display the score in serial:

48

microcade

Lou [Lines 185 & 186] Output the

181 for (int g = 0; g < 4; g++) |

187 Lines[g] = O; SCore every game loop

183 }

184 } We also need a “Game Over”
185 Serial.print{ "Score:'); . . .

186 Serial .printlninScore); IndlCGtIOh Gnd tO tell the

a7 //DutputField() ; player there final score. Lets

188 JutputFrame () ;

185} < add that:

150 Serial.print| "Game Over!! Score:™) ;I End Of gqme

191 Serial.println(nScore); [LineS 190 & 191] Output a

1592 |} < .

193 End of void Game Over message and the
154 bool DoesPieceFit(int nTetromino, int nPotation, int nPosX, int nl .

1951 final score.

1896 S/ A1l Field eells >0 are occupied

Be sure to add these lines of
code to the end of the game loop/end of the void loop().

Graphics Engine

At this point, you can upload your code and check out the serial monitor to play Tetris in

the serial monitor. (however, its quite hard as the field is constantly being outputted). The
next section will focus on creating the graphics engine for our game. We will focus on
rendering the Tetris game on the onboard screen on your Microcade Console. Let’s get
started:

Render()

We are going to render the graphics in two functions.

RenderFrame() = Will render the frame/boundary walls upon screen setup. This is
because we don’t need to constantly update the boundary, and if we do then we
get a flickering effect that doesn’t look good.

Render() = This will render everything inside of the field. The tetrominos, lines, etc.

Lets tackle the Render() function first:

49

microcade

Tetris Guide

349 f/Graphics Engine

2E0 woid Renderi) {

351 int x = 0;

352 int w = 0;

353 for (int a = 0; a < (nFieldWidth) * (nFieldHeight); att) {

354 if (% % nFieldWidth == nFieldWidth - 1) {

355 v = v + BrickBizme;

356 1

357 x = a % nFieldWidth;

358 switch (outputlal) |

358 case ' ':

3E0 aboy. £fillFectix * BrickSize + 46, v, BrickZize, BrickSize, ELACK);
361 brealk;

3EZ case 'A':

263 aboy_ fillPectix * BrickSize + 46, v, BrickSize, BrickSize, ELACK);
364 aboy._drawBect ix * BrickSize + 46, v, BrickZize, BrickSize, WHITE);
ZE5 hreak;

3EE case 'B':

2E7 aboy_ fillFectix * BrickSize + 46, v, BrickSize, BrickSize, ELACK);
3E8 aboy.drawlectix * BrickSize + 4&, w, BrickBize, BrickSize, WHITE);
369 hreak;

370 case 'C':

3271 aboy_ fillFectix * BrickSize + 46, v, BrickSize, BrickSize, ELACK);
372 aboy._drawFectix * BrickSize + 46, v, BrickSize, BrickSize, WHITE);
373 break;

374 case 'D':

375 aboy_ fillFectix * BrickSize + 46, v, Brick3ize, Brick3ize, ELACK);
276 aboy._drawFectix * BrickSize + 46, v, BrickSize, BrickSize, WHITE);
377 break:

378 case 'E':

379 aboy_ fillFectix * BrickSize + 46, v, Brick3ize, Brick3ize, ELACK);
280 aboy_drawFectix * BrickSize + 46, v, BrickSize, BrickSize, WHITE);
281 break:

38z case 'F':

383 aboy. fillFectix * BrickSize + 46, v, BrickSize, BrickSize, ELACK);
284 aboy_drawFectix * BrickSize + 46, v, BrickSize, BrickSize, WHITE);
385 break;

386 case 'G':

387 aboy.fillPectix * BrickSize + 46, v, Brick%ize, BrickSize, ELACK);
388 aboy_drawFectix * BrickSize + 46, v, Brick3ize, Brick3ize, WHITE);
389 break;

350 case '=':

391 aboy.fillPectix * BrickSize + 46, v, Brick%ize, BrickSize, ELACK);
392 aboy_drawlineix * BrickSize + 46, v + BrickSi=ze / 2, x * BrickSize + BrickSize + 48, v + Brick3ize /7 I, WHITE):
383 brealk;

394 }

385}

396 aboy._displayvi);

397 |}

50

microcade

It looks long and complicated but in reality its just a large switch case! To summarise, we
are simply looping through the output array and outputting, to the screen, a certain block
depending on what the value is in the array. If its empty, output a black brick, if it’s a
tetromino, output a brick with a certain colour etc.

We need to firstly add the BrickSize variable to the top of our code:

5 int Brick3ize = 3;
- We set this to 3 as we want each block to be 3 pixels wide/high.

Lets take a look at the parts of the code leading up to the switch case:

e P A

350 woid BRenderi) {

351 int = = 0;

352 int v = 0;

353 for (int a = 0; a < (nFieldWidth) * (nFieldHeight): a++) {

354 if (®x % nFieldWidth == nFieldWidth - 1) {
355 ¥ = ¥ + BrickSize;

3568 }

357 ¥ = a % nFieldWidth:

358 switch (output[al) |

[Lines 351 & 352] Firstly, in the function, we declare two local variables called x and y.
These will be used to store the brick that we are going to render to the screen.

[Line 353] Is a for statement that will loop through all the bricks/elements in the output
array.

[Lines 354] Similar to what we did before when we outputted the data to serial, when we
reach the end of a row, we need to output the data on a new line/row. To do this, we use
this if statement.

If the X coordinate divided by the field width (x % nFieldWidth) has a remainder of 11,
(nFieldWidth -1) then [Line 355] we need to add 3 (bricksize) to the y coordinate to move
it down a row (as each row is one brick and one brick is 3 pixels down).

We use a remainder of 11 as the array is indexed from 0 meaning 12 elements/bricks have
been outputted. 12 bricks makes up one row as 12 is the width. (index positions 0 to 11
make up row 1, 12 - 23 make up row 2 etc) therefore if 23 divided by x is 11 (which it is)
then add 3 (BrickSize) to the y coordinate, meaning the next data is offset to the next row.

[Line 357] X needs to constantly be reset when it reaches 11, back to 0, to print the new
elements/bricks in the new row.

Here we use the ‘a’ variable from the for statement and divide it by the nFieldWidth. This
means every time we shift the y value, we are also resetting the x value back to 0. E.g.

a = 23 meaning we need to shift the y value down to start a new row. The x value currently
is:

51

microcade

X = 23 % nFieldWidth (12) meaning x is set to 11 (as 11 is the remainder).

The loop iterates once more and the a variable is now 24. This means the new data is
being outputted on a new row and the x value needs to be reset to 0.

X = 24 % nFieldWidth (12) meaning x is set to 0 and so forth.

Now lets take a look at the switch case:

358 zwitch {(outputl[al) |

358 case ' ':

3E0 aboy.£illFectix * Brick3ize + 46, v, BrickSize, Brick3ize, ELACE):
361 break:

362 case 'A':

3E3 aboy.£illFectix * BrickSize + 48, v, BrickSize, BrickSize, ELACK):
364 aboy. drawFect{x * BrickSize + 46, v, BrickSize, BrickSize, WHITE);
365 break;

3EE case 'B':

3687 aboy.£illFectix * Brick3ize + 46, v, BrickSize, BrickSize, ELACE);
3E8 aboy. drawFecti{x * BrickSize + 48, v, BrickSize, BrickSize, WHITE):
389 break;

370 case 'C':

371 aboy. £illFecti{x * BrickSize + 46, y, BrickSize, BrickSize, BELACKE);
372 aboy. drawFecti{x * Brick3ize + 46, v, BrickSize, Brick3ize, WHITE):
373 break:

374 case 'D';

375 aboy.£illFectix * BrickS3ize + 468, v, BrickSize, BrickSize, ELACE):
376 aboy. drawFect{x * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
377 break;

378 cage 'E':

379 aboy.£illFectix * Brick3ize + 46, v, BrickSize, BrickSize, ELACE);
380 aboy. drawFecti{x * BrickSize + 48, v, BrickSize, BrickSize, WHITE):
381 break;

382 case 'F':

383 aboy. £illFecti{x * BrickSize + 46, ¥, BrickSize, BrickSize, BELACKE);
384 aboy. drawFecti{x * Brick3ize + 46, v, BrickSize, BrickSize, WHITE):
385 break:

386 case 'G':

387 aboy.£illFectix * BrickS3ize + 468, v, BrickSize, BrickSize, ELACE):
388 aboy. drawFect{x * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
389 break;

380 cage '=':

3581 aboy.£illFectix * Brick3ize + 46, v, BrickSize, BrickSize, ELACE);
3892 aboy. drawvline(x * Brick3ize + 4&, ¥ + Brick3ize / I, x * Brick3ize + Brick3ize + 48, ¥ + Brick3ize / I, WHITE):
383 break;

394 }

385 }

396 aboy. displayi();

397}

Here we use the a variable from the for loop, as this will iterate all the way through the
array, to get the index value of the output. We then s AR i R AR
compare this value with each character from the string e S o e
[“ ABCDEFG=#"“]. The only thing we do not compare is : :
the boundary ‘#’ as we do not want to overwrite it every
loop as it will cause flicker. That is where the other

function comes in handy. el (il

/ something like return a valus
return [aValue]:
g break;

something like return a value
Switch + case statement: Similar to a bunch of If

statements, a switch and case statement compares a
value with the case value, aka if ValueToBeCompared

ecurn [aValue]:
break;

was 2, then the 3rd case down would run as that is case 18 defaule: //
2; and ValueToBeCompared == 2, therefore a value ;

52

microcade

would be returned and the loop would break. If no value is matched, then the default
block is ran.

If the break statements are not used, then any case statement that matches the switch
variable, will run. This includes the default block of code. See the example on the right.

53

microcade

358 switch {(outputl[al) {

359 case ' ':

360 aboy. £illRectix * BrickSize + 46, ¥, BrickSize, BrickSize, ELACE):
3681 break;

The first case statement we use is for empty space. If the output value is equal to ‘ ‘ then
we should output a blank brick. This means each time we iterate and a piece moves, the
old piece on the screen is covered with a black brick.

To output to the screen, we call the fillRect function. This requires 5 parameters:
aboy. fillRect(xCoordinate, yCoordinate, Width, Height, BLACK /WHITE)

In our case, our x coordinate needs to be multiplied by the brickSize to translate it into the
appropriate position as each brick is 3 pixels wide and our current x variable is from 0 to
11. We also add 46 pixels (+ 46) to centralize the board on the screen.

Oury coordinate doesn’t need to be adjusted as that increases by 3 each time we finish a
row.

As we want to render a square, the width and length can be set to BrickSize (or 3 by 3)

Finally, we must choose either BLACK or WHITE. Here, as they are classed as empty, we
will set them to the background colour, BLACK. We use the keyword BLACK that is built
into the Arduboy Library.

362 case 'A';
aboy.£illPect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK); Here we can see the case statements
36 aboy.drawvFect(x * Brick35Size + 46, ¥y, Brick3Size, Brick3ize, WHITE):
365 brel; for each tetromino piece.
3EE case 'B':
387 aboy.fillFect(x * BrickSize + 46, ¥, BrickSize, BrickS5ize, BELACE):

aboy.drawFect(x * Brick3ize + 46, y, Brick3ize, Brick3ize, WHITE); TO get 0 gr'd like foect, We use the

break;
cage 'C': ¢ I H
aboy.fillFect(x * Brick3ize + 46, ¥, Brick3ize, Brick3ize, ELACE): Gboy'erWReCt() Command that WI“'
aboy. drawvhect(x * Bricks 48, y, BrickSize, BrickSize, WHITE); . .
ey, T BmeRmEe TG, Brieas, B draw just the outline of the rectangle.
case 'D': .
aboy.fillRectix * BrickSize + 46, y, BrickSize, BrickSize, BLACK); It requires the same pordmeters as the
aboy.drawFectx * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
prect fillRect command but just does the
case 'E';
aboy.fillPect(x * Brick3ize + 46, ¥, BrickSize, BrickSize, BLACK); 1
aboy.dravFect(x * BrickSize + 46, ¥, BrickSize, BrickSize, WHITE): OUtlIne'
break;

ot I Here we are firstly drawing a solid

aboy.fillPect(x * BrickSize + 46, ¥, BrickSize, BrickSize, ELACE):

aboy.dravFect (X * Brick3ize + 46, y, Brickiize, Brick3ize, WHITE):

break; BLACK rectangle (to remove any
;r;nyjfillpecc(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK): previous briCkS), qnd then drqwing qa

aboy.drawFect(x * BrickSize + 46, y, BrickSize, Brick3ize, WHITE);

preak; WHITE outline around it. When you

upload this to the screen, you’ll notice how each brick can now be identified.

The final case statement is for any lines:

380 case '=':

361 aboy.£illFectix * BrickSize + 46, v, BrickSize, Brick3Size, ELACH);

392 aboy.drawline(x * Brick3ize + 46, ¥ + Brick3ize / IZ, x * Brick3ize + Brick3ize + 48, ¥ + BrickSize / Z, WHITE):
393 break:;

[Line 391] We firstly set the background of the brick to black. This removes any tetromino
that was there before hand.

54

microcade

[Line 392] We then use a new function called ‘aboy.drawLine()’ which requires the below
parameters:

aboy.drawLine(x0, y0, x1, y1, BLACK/WHITE);
Note x0 & yO would be the start point, and x1 & y1 would be the endpoint. For us:
The start x coordinate is the same: x * BrickSize + 46

The start y coordinate is : y + BrickSize / 2 as we want to go to the y coordinate, then draw
the line in the middle of the brick.

The end x coordinate is: x * BrickSize + BrickSize + 46. We simply just add the Bricksize to
the x coordinate to get to the ‘other side’ of the brick to draw a straight line that will be 2
pixels (BrickSize) wide.

The end y coordinate will be the same: y + BrickSize / 2 to keep the line straight.

As we do this for each brick in the row when a line is detected, this will remove any colours
behind it by making the background black. We then draw a horizontal white line over it to
showcase to the user that they have formed a line.

The final, most important line is:
&| aboy.display(): Which outputs all of this to the screen.

This is because, when we run a command like
aboy. fillRect(); We are placing that in the screen buffer. aboy.display() displays the
screen buffer to the screen.

Be sure to add this function at the end of your code. And call it in the below places:

217} Serial.princ("Score:™); We need to call the render
218 Serial.println(n3core);

218 function at the end of the
220 Bender():

221 //DutputField(); game loop.

222 IIbutputFramet]:

223 1

224 Serial.print("Game Ower!! Score:™);
=2 } Serial.printin(nicore): serial outputs as if we don't, it
227 will slow down our game by a

228 bool DoesPieceFit(int nTetromino, int nFotation, int nPos¥, int nPosY)

LAY lot!

We also comment out the

55

microcade

el I The next place is before we
154 if (=um != D) remove the lines (where we
195 {

196 J/ Display Frame (cheekily to draw lines) hdd the OutputFrOme()

197 ,-’,-’I]utputFrame (N .

198 Render () ; function).

155 for {int i = 0; 1 < 4; i++) |

=00 if (Lines(i] '=0) { Simply comment out the

201 for {int px = 1l; px < nFieldWidth - 1; px++)

202 { OutputFrame() function and
203 for (int py = Lines[i]; py > 0; py-—-) { .

204 pField[py * nFieldVidth + px] = pField[(py - 1) * nrier Odd the Render(); function.
205 }

g } pFieldipx] = 0: This means we are rendering in

zoe

zne

M=

the line, removing the line then
lze |
rerendering the screen at the

end of the game loop. This creates a cool ‘line removal’ animation

Be sure to call the function in these two places. Use the line numbers as a reference.

Now that we have completed the first render function, we need to draw the
boundary/frame.

404 woid BRenderFramei) |

405 int ®x = 0;

408 int v = 0;

407 for {(int b = 07 b <= (nFieldWidth) * (nFieldHeight): b+ |

408 if (= % nFieldWidth == nFieldWidth - 1) |

409 v = ¥ + BrickSize;

410 }

411 ¥* = b % nFieldWidth:

412 if (pField[b] == 9) {

413 aboy.fillFectix * Brick3ize + 46, ¥, Brick3ize, Brick3ize, WHITE):
414 }

415 }

41 aboy.displayi):

417 '}

Lines 405 to 411 should look familiar to the first 7 lines in the Render() function. This code
prepares both the x and y coordinates to output the bricks on the display.

[Line 412] Here we are checking the pField display this time, not the output.

Why? Lets take a look at where we will call the function:

56

microcade

: the pField.

91 eetromino[S] = "33 300 i We call it before the output array has been
82 tetromino[&6] = " L L LB L. L. "
83 created/updated, in the void setup, right
84 for {(int ®x = 0; ®x < nFieldWidth; =x++) // Board E . . .
. for (int y = 0: y < nFieldHeight: yit) after the pField array has been ‘setup’ with
o pFisldly * nFieldiideh +x] = (x == 0 11 = = tha houndary. Therefore the only array, at
88 PenderFrame(): that moment in time, with the boundary, is
as
S0

1

w oL

wvold loopi) {

Therefore, we aren’t checking for the char
‘#’ we are checking for the number 9. - as 9 represents the boundary.

Therefore, if the pField[b] value is 9, then we need to print a white square to the screen:

To create a white box, we use the drawRect() function from before hand and set the
colour to WHITE on line 413. The parameters of the x and y coordinates are also the same
from the last function.

Be sure to add the above function to the bottom of your code and call it in the void
setup(), after we fill in the pField array (see line numbers/photos for reference).

Now we have a fully working tetris game! Click upload and have a play!

You should notice a couple things are missing that we are going to add:

1. Youcan’t see your score.
2. Thereis noindication that the game is over.
3. Thereis no pre-screen.

Lets go ahead and add these things:

57

microcade

Showing the Score

To do this, we are going to need some functions to draw text to the screen. As we are
going to be using this a lot for the pre-screen, outputting the score and indicating that the
game is over, we are going to make this a function.

To do this, we are going to create a function that draws text to a specified coordinate.
Then another that will draw text in a centred position.

420 woid aboy_drawStringiString text, int ®, int ¥, int size, uintlé_t color, uintlé t BackgroundColour) |
421 aboy. setCursorix, ¥):

422 aboy.setTextloloricolor) ;

473 aboy.setTextiize (size);

474 aboy. setTextlrap (trus) ;

475 aboy.printlnitext)

428 aboy.dizplay():

477 |}

478

4258 woid aboy_drawCentereditring(String text, int ¥, int size, uintlé_t color) {
430 int len = (text.lengthi{)) * € * zize;

431 int left = {128 - len) / Z2:
432 if (left < O) {

433 left = 0;

434 }

435

436 aboy_drawstring| text, left, ¥, size, color, BLACKE):
437 1}

The first function ‘aboy_drawString()’ is a easy way to print text to the screen in one line.
It takes all the parameters required to print the text to the screen:

- String Text = The message that we want to display

- Intx =Is the x coordinate

- Inty =istheycoordinate

- Int size = how big the text is going to be

- Unintl6_t color = takes a 16 bit colour variable that will be used for the text colour

- Unintl6_t BackgroundColour = Takes a 16 bit colour variable that will be used for the
background colour.

With these variables we have to then actually print the text to the screen:

The first thing we do is set the cursor position. This will tell the Arduino where we want the
string to be printed, see the grid below. The setCursor command will set the cursor to the
top left of the text.

Next, we set the text colour, we can set both the colour of the text itself (the A in the
picture) and the background (the greyed out 6x8 area). You

can use aboy.setTextColor(BLACK/WHITE) to set the text ! 1
colour to either BLACK or WHITE | Bk
Next, we have the Text size. This will multiply the default text . ﬁ}
size by the specified scale factor. The default size is 1 and .
58

microcade

would produce the text below (5 pixels wide by 7 pixels in height). Note that this is an
integer value so values such as 1.5 cannot be used. A factor of 2 would produce text with
10 pixels in width and 14 pixels in height.

The text wrap is how the text interacts with meeting the edge of the screen, with the text
wrap, it will simply move on to a new line. You can, however, turn this off by setting this to
false, meaning the text CAN print off-screen.

Finally, we have the print command, aboy.println(). This will print the text to screen buffer
under the above ‘settings’ or setup.

We then use aboy.display() on the next line to display this on the screen.

Now that we have the basic function, we want another function that will automatically
print centered text depending on how large the string is:

428 vold TEt_drawCentereditring(String text, int y, int size, uintlé_t color) m
429 int len = (text.lengthi)) * & * =size;

430 int left = (128 - len) / Z;

431 if ileft < 0) {

432 left = 0O;

433 }

434

435 Tit_drawString(text, left, ¥, size, color, BLACKE):
436 '}

Here we require 4 parameters:

- String text = the message we want to output

- Inty =they coordinate that we want to output to the screen - notice there are no x
coordinates as the text will be cantered.

- Int size = the size of the text.

- Untl6_t color = the colour of the text

Now that we have the parameters, we need to do something with them to output a
centred message:

[Line 429] defined the length of the text and assigns it to len. We do this by getting the
amount of characters in the ‘text’ string by using the .length() function. We multiple it by
6 to get how many pixels wide it is. We also multiply it by the text size. As if we wanted
larger text, then there would be more pixels. Overall, this gets the length of the string in
pixels:

e.g. the word “Hello” at font size 1 would be:
4*6*1=24pixels

[Line 430] Next we find out the x coordinate of the text by finding out how far ‘left’ the
text needs to be. We store this in the variable called ‘left’.

59

microcade

To get this value, we minus the overall width of the screen with the length of the string.
The returning value is then divided by 2 to get how many pixels there are either side of the
string.

e.q.

(128 - 24 (for “Hello™)) = 104 / 2 = 52. Therefore, to print the text “Hello” centred, we
need 52 pixels either side. We store this in the variable called ‘left’ that will be passed
through, in line 435, as the x coordinate.

[Lines 431 to 433] Simply checks if the ‘left’ variable is less then 0, if it is then It means the
string is longer then the screen and, to not get any errors, we set the left coordinate to 0.

[Line 435] Here we are calling the earlier function we created. We are passing through the
text, x coordinate as ‘left’, the y coordinate, the size, the color, and finally we assume the
background colour is black.

Make sure to add these function to the end of the whole code (see line numbers for
reference).

We now need to call the cantered string function to print out the score.

204

205 for (int g = 0; g < 4; g++) | [Lne 212] Here we are converting the
Z0E Lines[g] = 0; . N . .

07 } integer ‘nScore’ To a string using the
208 } . .

08 J/%erial.print("Score:"); Strlng() fUnCtlon.

210 J/Serial.printlninScore) ;

211 We then pass in the y coordinate, 150,
21z aboy_drawCenteredString(String(nicore), 56, 1, WHITE); . . .

213 to display it underneath the Tetris

214 Rendex () ; . , . .
215 //0utputField(): game field. As we don’t want it to big,
Z1e S/ utputcF H . .

] I we use text size 1 and white text.

Zl8 /4 Oh Dear = GAME OVER

*1a Cardial nrint! "Hame Mrerl |l Seare-"h-

Add this code in underneath where we serial.print() the score and upload the code to see
the score go up!

Game Over screen

Now that we have these two functions, we can easily create a game over screen:

60

microcade

214 Bender () ;

15 JitatputField() ;
21le S/0utputFrame () ;
217 }

218 J¢ Oh Dear = GAME OVER

218 Serial.printi "Game Over!! Score:™):

220 Serial.printlninsScore) ;

221

222 aboy_drawCentereditring("GAME OVER", 28, IZ, WHITE);
223 aboy_drawCentereditring(String(nicore), 56, 1, WHITE):
224}

225

22 bool DoegPieceFitiint nTetromino. int nFotation. int nPosX. int nPosY)

Here, we are displaying:

[Line 231] The Text “GAME OVER” in the centre of the screen. As the text prints with a
black background, It covers some the game field meaning we an read the text. This shows
to the gamer that the game is over and is placed after the game loop in the void loop.

[Line 232] We output the final score using the same line as before.

Go ahead and insert this code where we ‘serial.print()’ the game screen and play/lose the
game to see it pop up!

61

microcade

Creating a Pre-Screen

A pre-screen shows the game name/creator. For us, we want to show the words Tetris

and your name!

To make it easier to implement, we are going to create it in a function:

432 woid PreSecreen() {

433 aboy_drawCentereditring("Tetris™, 26, 2, WHITE):

434 aboy_drawCentereditring("By Jack Daly"™, 56, 1, WHITE):
435

436 delawi(l000);

437 1}

The function is called ‘PreScreen’ and is just an easy way to implement a Pre-Screen.
[Line 439] We firstly print “Tetris” in large writing in the centre of the screen.

[Line 443] Here we are printing your name to the screen, go ahead and change this to your
name! We set the y value to 100 so it fits underneath the title.

Finally we add a 1 second delay so the player can read the pre-screen and move onto
playing the game.

Now that we have created our own pre-screen, we need to call it in the void setup():

i; vold setup() { Here we can see, we call the pre-screen,
;: sertal.beain(E600); then clear the screen. This prepares it for
40 aboy.boot(); when we render the frame as the

jf aboy. clear ()] background will be black and it removes

43 //0utput Pre Screen any past text that was on the screen.

44 Prelcreeni);

45 aboy.oclear():

45

47 fiCreating the wieces

Think of it as ‘cleaning the screen’.

Last touch - Sound

The game is pretty much complete, but it is to quiet... Lets add some basic sound to the

game.

62

microcade

Lad

The first thing we need to do is define

4 ”Bu?zer . the speaker pin. We do this by using the
5 #define SPEAKER PIN SPEAFER_1//Al

- Arduboy?2 Lib keyword

7T wold setup() { “PIN_SPEAKER_1".

oo

Serial.begin(9e00) ;

[T N N I L I L I Y |
[

Lo

To make the buzzer work, we need to set

40 aboy.boot() both PIN_SPEAKER_1 AND

41 aboy.cle H

| Toeieer PIN_SPEAKER_2 to an OUTPUT. To let
43 pinMode (PIN_SPEAFER_1, OUTPUT): Arduino know we are sending data to
14 pinMode (PIN_SPEAKER_Z, OUTPUT) ;| the

45

If you get sick of the buzzer, you can
simply set this to 0 and the buzzer will be gone.

Go ahead and add this above/in the void setup()

We are going to be adding core sounds in certain area of our code:

The first is to play a quick tune when we place down a piece.

151 break; To use the buzzer we require two
Los ' functions:

153 } :

L4 } tone(speakerPin, Frequency, delay);
155 }

158 delay(delay);

157 A/Play Tune when piece iz placed

158 tone (SPEAFER, 1000, 40); The first function creates the actual
159 delayi40): sound.

1ED0 tone (SPEAFER, 1250, 20):

161 delay(20); This function requires 3 parameters:
162

The pin of the buzzer, the frequency

le3 nicore += Z5;

164 that we want the buzzer to play at and
165 //Add score £or each line the delay, how long the tone will play
lEE for iint i = 0; 1 < 4; i++) { for.

167 if (Lines[i] '= 0 |

led nicore += 100; The second function, the delay, stops

the program from running the second
tone command and lets the first tone command play its tone. Note that the tone will stop
playing after the given delay. Aka, the tone on line 158 will play for 40 milliseconds. To
stop the next tone from playing, we pause for 40 seconds while the first tone plays.

The thing to note here is the frequency. The frequency varies from about 123 to 4978.

63

microcade

Here we are using 1000, which is a lower tone, in the first tone command [Line 158] and
then 1250, which is a bit higher, in the second tone function [Line 160]. This creates a cool
sound that tells the user that their piece has been locked down.

Go ahead and add these lines to your code, use the line numbers for a reference. These
lines of code should be placed above the nScore += 25;

The next tune to play is when the user gets a line:

z10 { Here, when a line is detected, we play a
Z11 /¢ Display Frame (cheekily to draw line |.|.t

Z1z2 JiutputFrame () ; sma une.

Z13 Render{) ,

n1a We use a for loop that’s starts from O,
215 for {int i = 0; 1 < 1000 ; i += 100) ends at 1000, and increases in 100’s, to
216 { . .

217 tone (SPEAKER, i, 50): play an increasing frequency.

218 dklay(50); .

219 } We used 1000 and 100 instead of 10 and 1
Enll — _ : so we could use the i value as the tone
221 for {int 1 = 0; 1 < 4; i++) |

222 if (Lines[i] !'= 0} { frequency.

Using the i as the frequency, allows for the tone to change after each iteration of the loop
to create a tune that has increasing tones.

We use a small delay of 50 to not get in the way of the gameplay but to give us enough
time to play the tune.

Be sure to add this small section of code in after the first Render(). Use the line numbers as
a reference.

441 woid Predcreen() |

447 aboy_drawCentered3tring("Tetris", 26, 2, WHITE): FInG“.y we will OdJUSt the pre-screen to

443 aboy_(.lraw(.:enterec.lStringF"BY Jack Daly™, 56, 1, WHITE): Gdd a nice tune:

444 for (int i = 0; 1 < 7; i++) {

445 tone (SPEAFER, i * 100, 10 * i);
246 delay(l0 * 1); The first thing to note is the tune inside
447 1 .

445 tone (SPEAKER, 750, 40): the for loop on lines 444 and 446. Here

jjn delay(40: we are taking the i value from the loop
451 tone (SPEAFER, 500, 80): Qnd:

452 delay(80):

453 delay(l000) ;

asa)y i * 100 = multiplying it by 100 to give us
a varying frequency after each iteration.

10 * i = Multiplying it by 10 to get a varying delay after each iteration.
The for statements will iterate 7 times to produce a varying toned sound.

After the for statement, we play two extra sounds, one that is higher than the last
frequency in the loop, on line 471, and one that is lower then the last frequency player, on
line 474.

Be sure to update your new pre-screen and upload your code to hear your new sound
effects!

64

microcade

Final Code

Congratulations for completing this course! Now you have Tetris on your Microcade

Console. Now is your chance to play around with it and see what you can add. Why not
adjust the splash screen, the sounds or see what else you can do! The world is yours!

Thank you for following along with this tutorial. If you have any programming questions,
we strongly advise that you check out the Arduboy community. If you have any Microcade

related issues, please email us at help@microcade.com.

Check out our other tutorials at https://playmicrocade.com/learnarea/

Tetris_Tutorial.ino

#include <Arduboy2.h>
Arduboy2 aboy;
int BrickSize = 3;

String tetromino[7];
bool bGameOver = false;

int nFieldWidth = 12;

int nFieldHeight = 18;
unsigned char pField[216];
char output[216];

int nCurrentPiece = 0;

int nCurrentRotation = 0;

int nCurrentX = nFieldWidth / 2;
int nCurrentY = 0;

int nSpeed = 10;
int nSpeedCount = 0;
bool bForceDown = false;

int Lines[4] = {0, 0, 0, 0};
int nTickCount = 0;

int nScore = 0;

float lastHoldTime = ©;

bool bKey[4] = {0, @, 0, @};
bool bRotateHold = true;

//Buzzer
#define SPEAKER PIN_SPEAKER 1//A1

void setup() {
Serial.begin(9600);

aboy.boot();
aboy.clear();

pinMode (PIN_SPEAKER_1, OUTPUT);
pinMode (PIN_SPEAKER_2, OUTPUT);

65

microcade

https://community.arduboy.com/
mailto:help@microcade.com

//Output Pre Screen
PreScreen();
aboy.clear();

//Creating the pieces

tetromino[@] = "..X...X...X...X."; // Tetronimos 4x4
tetromino[1] = "..X..XX. . X...... 05
tetromino[2] = "..... XX XX .. "5
tetromino[3] = ".X...XX...X..... "5
tetromino[4] = ".X... XX.. X.... .. "
tetromino[5] = ".X...X... XX..... "5
tetromino[6] = "..X... X.. XX..... "5

for (int x = @; x < nFieldWidth; x++) // Board Boundary
for (int y = 0; y < nFieldHeight; y++)
pField[y * nFieldWidth + x] = (x == @ || x == nFieldWidth - 1 || y == nFieldHeigh
t-1) 29 : 9;

RenderFrame();

}

void loop() {

while (!bGameOver) // Main Loop

{
// Timing B e e EEE
nSpeedCount++;
delay(nSpeed);
bForceDown = (nSpeedCount == nSpeed);
// Input B e e e EEE e e
CheckControls();

// Force the piece down the playfield if it's time
if (bForceDown)

{

//Set speed back to @
nSpeedCount = 0;

// Update difficulty every 50 ticks
nTickCount++;
if (nTickCount % 50 == 0)

if (nSpeed >= 10) nSpeed--;

// Test if piece can be moved down

if (DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX, nCurrentY + 1)) {
nCurrentY++; // It can, so do it!

}

else
{
// It can't! Lock the piece in place
for (int px = ©; px < 4; px++)
for (int py = ©; py < 4; py++)
if (tetromino[nCurrentPiece][Rotate(px, py, nCurrentRotation)] != '.")
pField[(nCurrentY + py) * nFieldWidth + (nCurrentX + px)] = nCurrentPiece

// Check for lines
for (int py = ©; py < 4; py++)
if (nCurrentY + py < nFieldHeight - 1)

bool bLine = true;
for (int px = 1; px < nFieldWidth - 1; px++)
bLine &= (pField[(nCurrentY + py) * nFieldWidth + px]) != 0;

66

microcade

if (bLine)
{
// Remove Line, set to =
for (int px = 1; px < nFieldWidth - 1; px++) {
pField[(nCurrentY + py) * nFieldWidth + px] = 8;
}

//Array push back
for (int h = @; h < 4; h++) {
if (Lines[h] == 0) {
Lines[h] = nCurrentY + py;
break;
}
}
}
}

//Play Tune when piece is placed
tone(SPEAKER, 1000, 49);
delay(40);

tone(SPEAKER, 1250, 20);
delay(20);

nScore += 25;

//Add score for each line
for (int i = 0; i < 4; i++) {
if (Lines[i] !'= 0) {
nScore += 100;
}
¥

// Pick New Piece

nCurrentX = nFieldWidth / 2;
nCurrentY = 0;
nCurrentRotation = 0;
nCurrentPiece = rand() % 7;

// If piece does not fit straight away, game over!
bGameOver = !DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX, nCurrentY

)3

// Draw Field
for (int x = @; x < nFieldWidth; x++)

{
for (int y = 0; y < nFieldHeight; y++)
{
output[(y * nFieldwidth) + x] = " ABCDEFG=#"[pField[(y * nFieldwWidth) + x]];
}
}

// Draw Current Piece
for (int px = 0; px < 4; px++) {
for (int py = ©; py < 4; py++) {

if (tetromino[nCurrentPiece][Rotate(px, py, nCurrentRotation)] != '.")
{
output[(nCurrentY + py)*nFieldWidth + (nCurrentX + px)] = nCurrentPiece + 65;
}
}
}
67

microcade

//Remove Lines

int sum = 0;

for (int 1 = 0; i < 4; i++) {
sum = sum + Lines[i];

}

if (sum != 9)

{
// Display Frame (cheekily to draw lines)
//OutputFrame();
Render();

for (int 1 = @; i < 1000 ; i += 100)
{

tone(SPEAKER, i, 50);

delay(50);

}

for (int 1 = 9; i < 4; i++) {
if (Lines[i] != @) {
for (int px = 1; px < nFieldwWidth - 1; px++)
{
for (int py = Lines[i]; py > 0; py--) {
pField[py * nFieldWidth + px] = pField[(py - 1) * nFieldwidth + px];

¥
pField[px] = @;

}
}
else {
break;
}
}
for (int g = 0; g < 4; g++) {
Lines[g] = ©;
}

}

//Serial.print("Score:");

//Serial.println(nScore);
aboy_drawCenteredString(String(nScore), 56, 1, WHITE);

Render();

//0utputField();

//OutputFrame();
}
// Oh Dear = GAME OVER
Serial.print("Game Over!! Score:");
Serial.println(nScore);

aboy_drawCenteredString("GAME OVER", 26, 2, WHITE);
aboy_drawCenteredString(String(nScore), 56, 1, WHITE);

}

bool DoesPieceFit(int nTetromino, int nRotation, int nPosX, int nPosY)

// All Field cells >0 are occupied
for (int px = ©; px < 4; px++)
for (int py = @; py < 4; py++)

// Get index into piece
int pi = Rotate(px, py, nRotation);

// Get index into field
int fi = (nPosY + py) * nFieldWidth + (nPosX + px);

68

microcade

// Check that test is in bounds. Note out of bounds does
// not necessarily mean a fail, as the long vertical piece
// can have cells that lie outside the boundary, so we'll
// just ignore them

if (nPosX + px >= @ && nPosX + px < nFieldWidth)

{
if (nPosY + py >= @ &% nPosY + py < nFieldHeight)
{
// In Bounds so do collision check
if (tetromino[nTetromino][pi] != '.' && pField[fi] != @)
return false; // fail on first hit
}
}
}
return true;
}
int Rotate(int px, int py, int r)
{
int pi = 0;
switch (r % 4)
{
case @: // @ degrees // e 1 2 3
pi = py * 4 + px; // 4 5 6 7
break; // 8 9 10 11
//12 13 14 15
case 1: // 90 degrees //12 8 4 ©
pi =12 + py - (px * 4); //13 9 5 1
break; //14 16 6 2
//15 11 7 3
case 2: // 180 degrees //15 14 13 12
pi =15 - (py * 4) - px; //11 16 9 8
break; // 7 6 5 4
//3 2 1 o
case 3: // 270 degrees // 3 7 11 15
pi =3 -py + (px *4); // 2 6 10 14
break; // 1 5 9 13
} // @ 4 812
return pi;
}

void OutputField() {
for (int i = @; i < nFieldWidth * nFieldHeight; i++) {
if (i % nFieldWidth == nFieldwidth - 1) {
Serial.println(pField[i]);

}
else {
Serial.print(pField[i]);
}
}
Serial.println("----");

}

void OutputFrame() {
for (int 1 = @; i < nFieldwWidth * nFieldHeight; i++) {
if (i % nFieldWidth == nFieldWidth - 1) {
Serial.println(output[i]);

}
69

microcade

else {
Serial.print(output[i]);
//Serial.print((uint8_t) output[i]);
}
}

Serial.println("----");

}

void CheckControls() {
bKey[0] = (aboy.pressed(RIGHT_BUTTON) && (millis() - lastHoldTime) > 100) ? 1 : @;

bKey[1] = (aboy.pressed(LEFT_BUTTON) && (millis() - lastHoldTime) > 100) ? 1 : 0;
bKey[2] = (aboy.pressed(DOWN_BUTTON) && (millis() - lastHoldTime) > 100) ? 1 : 0;
bKey[3] = aboy.pressed(A_BUTTON);
if(aboy.pressed(RIGHT_BUTTON) && (millis() - lastHoldTime) > 100){

bKey[0] = 1;
}
else{

bKey[0] = ©;

//Simple Buffer

int Sum = 9;

for (int i = @0; 1 < 4; i++) {
Sum = Sum + bKey[i];

}

if (Sum != @) {
lastHoldTime = millis();

}

// Handle player movement

nCurrentX += (bKey[@] && DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX + 1,
nCurrentY)) ? 1 : 0;

nCurrentX -
= (bKey[1] && DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX - 1, nCurrentY))
?1:0;

nCurrentY += (bKey[2] && DoesPieceFit(nCurrentPiece, nCurrentRotation, nCurrentX, nCu
rrentY + 1)) ? 1 : 0;

// Rotate, but latch to stop wild spinning
if (bKey[3])
{

nCurrentRotation += (bRotateHold && DoesPieceFit(nCurrentPiece, nCurrentRotation +
1, nCurrentX, nCurrentY)) ? 1 : 0;
bRotateHold = false;
}
else
bRotateHold = true;

}

//Graphics Engine
void Render() {
int x = 9;
int y = 0;
for (int a = @; a < (nFieldWidth) * (nFieldHeight); a++) {
if (x % nFieldWidth == nFieldWidth - 1) {
y =y + BrickSize;
}
X = a % nFieldWidth;
switch (output[a]) {
case ' ':
aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK);
break;
case 'A':

70

microcade

aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK);
aboy.drawRect(x * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
break;

case 'B':
aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK);
aboy.drawRect(x * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
break;

case 'C':
aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK);
aboy.drawRect(x * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
break;

case 'D':
aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK);
aboy.drawRect(x * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
break;

case 'E':
aboy.fillRect(x BrickSize + 46, y, BrickSize, BrickSize, BLACK);
aboy.drawRect(x BrickSize + 46, y, BrickSize, BrickSize, WHITE);
break;

case 'F':
aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK);
aboy.drawRect(x * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
break;

case 'G':
aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK);
aboy.drawRect(x BrickSize + 46, y, BrickSize, BrickSize, WHITE);
break;

case '=":
aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, BLACK);

aboy.drawLine(x * BrickSize +
+ 46, y + BrickSize / 2, WHITE);
break;

46, y + BrickSize / 2, x * BrickSize + BrickSize

}

}
aboy.display();
}

void RenderFrame() {
int x = 9;
int y = 0;
for (int b = @; b <= (nFieldWidth) * (nFieldHeight); b++) {
if (x % nFieldWidth == nFieldWidth - 1) {
y =y + BrickSize;
}
X = b % nFieldwWidth;
if (pField[b] == 9) {
aboy.fillRect(x * BrickSize + 46, y, BrickSize, BrickSize, WHITE);
}
}
aboy.display();
}

void aboy_drawString(String text, int x, int y, int size, uint16_t color, uintl6_t Back
groundColour) {

aboy.setCursor(x, y);

aboy.setTextColor(color);

aboy.setTextSize(size);

aboy.setTextWrap(true);

aboy.println(text);

aboy.display();
}

void aboy_drawCenteredString(String text, int y, int size, uintl6_t color) {
int len = (text.length()) * 6 * size;
int left = (128 - len) / 2;

71

microcade

if (left < @) {
left = 0;
}

aboy_drawString(text, left, y, size, color, BLACK);
}

void PreScreen() {
aboy_drawCenteredString("Tetris", 26, 2, WHITE);
aboy_drawCenteredString("By Jack Daly", 56, 1, WHITE);
for (int 1 =0; i < 7; i++) {
tone(SPEAKER, i * 100, 10 * i);
delay(1e * i);
}
tone(SPEAKER, 750, 40);
delay(40);

tone (SPEAKER, 500, 80);
delay(80);
delay(1000);

72

microcade

